
Custom Hardware State-Machines

and Datapaths –

Using LLVM to Generate FPGA

Accelerators

Alan Baker

Altera Corporation

FPGAs are Awesome

 Fully Configurable Architecture

 Low-Power

 Customizable I/O

2

FPGA Design Hurdles

 Traditional FPGA design entry done in hardware

description languages (HDL)
 e.g. Verilog or VHDL

 HDL describe the register transfer level (RTL)

 Programmer is responsible for describing all the hardware and its behaviour
in every clock cycle

 The hardware to describe a relatively small program can take months to
implement

 Testing is difficult

 Far fewer hardware designers than software designers

3

Simpler Design Entry

 Use a higher level of abstraction
 Easier to describe an algorithm in C than Verilog

 Increases productivity

 Simpler to test and verify

 Increases the size of the developer pool

 Sounds promising, but how can we map a higher level

language to an FPGA?

4

Our Vision

 Leverage the software community’s resources

 LLVM is a great compiler framework
 Mature

 Robust

 Well architected

 Easy to modify and extend

 Same IR for different input languages

 We modify LLVM to generate Verilog
 Implemented a custom backend target

5

OpenCL

 Our higher level language

 Hardware agnostic compute language
 Invented by Apple

 2008 Specification Donated to Khronos Group and Khronos
Compute Working Group was formed

6

 What does OpenCL give us?
 Industry standard programming model
 Aimed at heterogeneous compute

acceleration
 Functional portability across platforms

OpenCL Conformance

 You must pass conformance to claim OpenCL support
 Over 8000 tests
 Only one FPGA vendor has passed conformance

7

The BIG Idea behind OpenCL

 OpenCL execution model …
 Define N-dimensional computation domain

 Execute a kernel at each point in computation domain

void

trad_mul(int n,

 const float *a,

 const float *b,

 float *c)

{

 int i;

 for (i=0; i<n; i++)

 c[i] = a[i] * b[i];

}

Traditional loops
kernel void

dp_mul(global const float *a,

 global const float *b,

 global float *c)

{

 int id = get_global_id(0);

 c[id] = a[id] * b[id];

} // execute over “n” work-items

Data Parallel OpenCL

FPGAs vs CPUs

 FPGAs are dramatically different than CPUs

 Massive fine-grained parallelism

 Complete configurability

 Huge internal bandwidth

 No callstack

 No dynamic memory allocation

 Very different instruction costs

 No fixed number of program registers

 No fixed memory system

9

Targeting an Architecture

 In a CPU, the program is mapped to a fixed architecture

 In an FPGA, there is NO fixed architecture

 The program defines the architecture

 Instead of the architecture constraining the program,

the program is constrained by the available resources

10

Datapath Architecture

FPGA datapath ~ Unrolled CPU hardware

11

B

A

A
ALU

A simple 3-address CPU

12

Op

Val

Instruction

Fetch

Registers

Aaddr

Baddr

Caddr

PC Load Store
LdAddr StAddr

CWriteEnable

C

Op

LdData

StData

Op

CData

B

A

A
ALU

Load immediate value into register

13

Op

Val

Instruction

Fetch

Registers

Aaddr

Baddr

Caddr

PC Load Store
LdAddr StAddr

CWriteEnable

C

Op

LdData

StData

Op

CData

B

A

A
ALU

Load memory value into register

14

Op

Val

Instruction

Fetch

Registers

Aaddr

Baddr

Caddr

PC Load Store
LdAddr StAddr

CWriteEnable

C

Op

LdData

StData

Op

CData

B

A

A
ALU

Store register value into memory

15

Op

Val

Instruction

Fetch

Registers

Aaddr

Baddr

Caddr

PC Load Store
LdAddr StAddr

CWriteEnable

C

Op

LdData

StData

Op

CData

B

A

A
ALU

Add two registers, store result in register

16

Op

Val

Instruction

Fetch

Registers

Aaddr

Baddr

Caddr

PC Load Store
LdAddr StAddr

CWriteEnable

C

Op

LdData

StData

Op

CData

B

A

A
ALU

Multiply two registers, store result in register

17

Op

Val

Instruction

Fetch

Registers

Aaddr

Baddr

Caddr

PC Load Store
LdAddr StAddr

CWriteEnable

C

Op

LdData

StData

Op

CData

A simple program

 Mem[100] += 42 * Mem[101]

 CPU instructions:

18

R0  Load Mem[100]

R1  Load Mem[101]

R2  Load #42

R2  Mul R1, R2

R0  Add R2, R0

Store R0  Mem[100]

CPU activity, step by step

19

A

A

A

A

A

R0  Load Mem[100]

R1  Load Mem[101]

R2  Load #42

R2  Mul R1, R2

R0  Add R2, R0

Store R0  Mem[100]
A

Time

Unroll the CPU hardware…

20

A

A

A

A

A

R0  Load Mem[100]

R1  Load Mem[101]

R2  Load #42

R2  Mul R1, R2

R0  Add R2, R0

Store R0  Mem[100]
A

Space

… and specialize by position

21

A

A

A

A

A

R0  Load Mem[100]

R1  Load Mem[101]

R2  Load #42

R2  Mul R1, R2

R0  Add R2, R0

Store R0  Mem[100]
A

1. Instructions are fixed.

Remove “Fetch”

… and specialize

22

A

A

A

A

A

R0  Load Mem[100]

R1  Load Mem[101]

R2  Load #42

R2  Mul R1, R2

R0  Add R2, R0

Store R0  Mem[100]
A

1. Instructions are fixed.

Remove “Fetch”

2. Remove unused ALU ops

… and specialize

23

A

A

A

A

A

R0  Load Mem[100]

R1  Load Mem[101]

R2  Load #42

R2  Mul R1, R2

R0  Add R2, R0

Store R0  Mem[100]
A

1. Instructions are fixed.

Remove “Fetch”

2. Remove unused ALU ops

3. Remove unused Load / Store

… and specialize

24

R0  Load Mem[100]

R1  Load Mem[101]

R2  Load #42

R2  Mul R1, R2

R0  Add R2, R0

Store R0  Mem[100]

1. Instructions are fixed.

Remove “Fetch”

2. Remove unused ALU ops

3. Remove unused Load / Store

4. Wire up registers properly!

And propagate state.

… and specialize

25

R0  Load Mem[100]

R1  Load Mem[101]

R2  Load #42

R2  Mul R1, R2

R0  Add R2, R0

Store R0  Mem[100]

1. Instructions are fixed.

Remove “Fetch”

2. Remove unused ALU ops

3. Remove unused Load / Store

4. Wire up registers properly!

And propagate state.

5. Remove dead data.

26

Fundamental Datapath

Instead of a register

file, live data is carried

through register

stages like a pipelined

CPU instruction

Live ranges define the

amount of data carried

at each register stage

Optimize the Datapath

27

R0  Load Mem[100]

R1  Load Mem[101]

R2  Load #42

R2  Mul R1, R2

R0  Add R2, R0

Store R0  Mem[100]

1. Instructions are fixed.

Remove “Fetch”

2. Remove unused ALU ops

3. Remove unused Load / Store

4. Wire up registers properly!

And propagate state.

5. Remove dead data.

6. Reschedule!

FPGA datapath = Your algorithm, in silicon

28

Load Load

Store

42

Data parallel kernel

29

__kernel void
sum(__global const float *a,
__global const float *b,
__global float *answer)
{
int xid = get_global_id(0);
answer[xid] = a[xid] + b[xid];
}

float *a =

float *b =

float *answer =

0 1 2 3 4 5 6 7

7 6 5 4 3 2 1 0

7 7 7 7 7 7 7 7

__kernel void sum(…);

Example Datapath for Vector Add

 On each cycle the portions of the

datapath are processing different

threads

 While thread 2 is being loaded,

thread 1 is being added, and

thread 0 is being stored

30

Load Load

Store

0 1 2 3 4 5 6 7

8 work items for vector add example

+

Work item IDs

Example Datapath for Vector Add

 On each cycle the portions of the

datapath are processing different

threads

 While thread 2 is being loaded,

thread 1 is being added, and

thread 0 is being stored

31

Load Load

Store

0
1 2 3 4 5 6 7

8 work items for vector add example

+

Work item IDs

Example Datapath for Vector Add

 On each cycle the portions of the

datapath are processing different

threads

 While thread 2 is being loaded,

thread 1 is being added, and

thread 0 is being stored

32

Load Load

Store

0

1
2 3 4 5 6 7

8 work items for vector add example

+

Work item IDs

Example Datapath for Vector Add

 On each cycle the portions of the

datapath are processing different

threads

 While thread 2 is being loaded,

thread 1 is being added, and

thread 0 is being stored

33

Load Load

Store

1

2

3 4 5 6 7

8 work items for vector add example

+

0

Work item IDs

Example Datapath for Vector Add

 On each cycle the portions of the

datapath are processing different

threads

 While thread 2 is being loaded,

thread 1 is being added, and

thread 0 is being stored

34

Load Load

Store

2

3

4 5 6 7

8 work items for vector add example

+

0

1

Silicon used efficiently at steady-state

Work item IDs

High Level Datapath Generation

Compiler Flow

Compiler Flow

36

AOC

FPGA

Programming File
kernel void
sum(global float *a,
 global float *b,
 global float *c)
{
 int gid = get_global_id(0);
 c[gid] = a[gid] + b[gid];
}

Source Code Altera Offline Compiler

LLC

OPT

Clang

Verilog

Design File

Compiler Flow

37

AOC

FPGA

Programming File
kernel void
sum(global float *a,
 global float *b,
 global float *c)
{
 int gid = get_global_id(0);
 c[gid] = a[gid] + b[gid];
}

Source Code Altera Offline Compiler

LLC

OPT

Clang

Verilog

Design File

Frontend

Parses OpenCL extensions and intrinsics to

produce LLVM IR

Clang

Compiler Flow

38

AOC

FPGA

Programming File
kernel void
sum(global float *a,
 global float *b,
 global float *c)
{
 int gid = get_global_id(0);
 c[gid] = a[gid] + b[gid];
}

Source Code Altera Offline Compiler

LLC

OPT

Clang

Verilog

Design File

Frontend

Parses OpenCL extensions and intrinsics to

produce LLVM IR

OPT

Middle end

Clang –O3 optimizations followed by

numerous custom passes to target the FPGA

architecture

Compiler Flow

39

AOC

FPGA

Programming File
kernel void
sum(global float *a,
 global float *b,
 global float *c)
{
 int gid = get_global_id(0);
 c[gid] = a[gid] + b[gid];
}

Source Code Altera Offline Compiler

LLC

OPT

Clang

Verilog

Design File

Frontend

Parses OpenCL extensions and intrinsics to

produce LLVM IR

LLC

Backend

Creates and schedules an elastic pipelined

datapath and produces Verilog HDL

Compiler Flow

40

AOC

FPGA

Programming File
kernel void
sum(global float *a,
 global float *b,
 global float *c)
{
 int gid = get_global_id(0);
 c[gid] = a[gid] + b[gid];
}

Source Code Altera Offline Compiler

LLC

OPT

Clang

Verilog

Design File

LLVM IR is used to describe a custom

architecture specific to the program

Dealing with Resource Constraints

Branch Conversion

41

Branch Conversion Example

42

Branch

A: True

B: False

C

Branch Conversion Example

1. Determine control flow

to conditionally

executed basic blocks

43

Branch

A: True

B: False

C

Branch Conversion Example

1. Determine control flow

to conditionally

executed basic blocks

2. Predicate instructions
 A is predicated if the branch

was false and vice-versa

44

Branch

A: True

B: False

C

Branch Conversion Example

1. Determine control flow

to conditionally

executed basic blocks

2. Predicate instructions
 A is predicated if the branch

was false and vice-versa

3. Combine A and B
 Branch is now unconditional

 PHIs in C become select
instructions

45

Branch

C

A/B

Branch Conversion Example

1. Determine control flow

to conditionally

executed basic blocks

2. Predicate instructions
 A is predicated if the branch

was false and vice-versa

3. Combine A and B
 Branch is now unconditional

 PHIs in C become select
instructions

4. Simplify the CFG
 Merges remaining blocks

46

All

Logic

Branch Conversion

 Squeezes the majority of the CFG into one basic block

 Saves significant amounts of area

 Increased instruction count in the basic block does not

adversely affect performance

47

Improving Performance of

Individual Threads

Loop Pipelining

OpenCL Task

 Kernel operates on a single thread

 Data for each iteration depends on the previous

iteration

 Loop carried dependency bottlenecks performance

49

__kernel void
accumulate(__global float *a,
 __global float *b,
 int n)
{
 for (int i=1; i<n; ++i)
 b[i] = b[i-1] + a[i];
}

Loop Carried Dependencies

 Loop-carried dependency: one iteration of the loop
depends upon the results of another iteration of the
loop

 The value of state in iteration 1 depends on the value
from iteration 0

 Similarly, iteration 2 depends on the value from iteration
1, etc

50

kernel void state_machine(ulong n)
{
 t_state_vector state = initial_state();
 for (ulong i=0; i<n; i++) {
 state = next_state(state);
 unit y = process(state);
 // more work…
 }
}

Loop Carried Dependencies

 To achieve acceleration, we can pipeline each iteration

of a loop containing loop carried dependencies
 Analyze any dependencies between iterations

 Schedule these operations

 Launch the next iteration as soon as possible

51

At this point, we can

launch the next

iteration

kernel void state_machine(ulong n)
{
 t_state_vector state = initial_state();
 for (ulong i=0; i<n; i++) {
 state = next_state(state);
 unit y = process(state);
 // more work…
 }
}

Loop Pipelining Example

 No Loop Pipelining

52

i0

i1

i2

 With Loop Pipelining

i0

i1

i2

i3

i4

Looks almost

like ND-

range thread

execution! C
lo

c
k
 C

y
c
le

s

C
lo

c
k
 C

y
c
le

s

No Overlap of Iterations
Finishes Faster because Iterations

Are Overlapped

Pipelined Threads vs. Loop Pipelining

 So what’s the difference?

 Loop Pipelining enables Pipeline Parallelism AND the

communication of state information between iterations.

53

t0

t1

t2

t3

t4

Pipelined threads

launch 1 thread per

clock cycle in

pipelined fashion

i0

i1

i2

i3

i4

Loop

dependencies

may not be

resolved in 1

clock cycle

Pipelined Threads Loop Pipelining

Accumulator Datapath

 A new iteration can be launched each cycle

 Each iteration still takes multiple cycles to complete,

but subsequent iterations are not bottlenecked

54

__kernel void
accumulate(__global float *a,
 __global float *b,
 int n)
{
 for (int i=1; i<n; ++i)
 b[i] = b[i-1] + a[i];
}

Load

Store

+

Accumulator Datapath

 A new iteration can be launched each cycle

 Each iteration still takes multiple cycles to complete,

but subsequent iterations are bottlenecked

55

__kernel void
accumulate(__global float *a,
 __global float *b,
 int n)
{
 for (int i=1; i<n; ++i)
 b[i] = b[i-1] + a[i];
}

Load

Store

+

i=0

Accumulator Datapath

 A new iteration can be launched each cycle

 Each iteration still takes multiple cycles to complete,

but subsequent iterations are bottlenecked

56

__kernel void
accumulate(__global float *a,
 __global float *b,
 int n)
{
 for (int i=1; i<n; ++i)
 b[i] = b[i-1] + a[i];
}

Load

Store

+

i=0

i=1

Accumulator Datapath

 A new iteration can be launched each cycle

 Each iteration still takes multiple cycles to complete,

but subsequent iterations are bottlenecked

57

__kernel void
accumulate(__global float *a,
 __global float *b,
 int n)
{
 for (int i=1; i<n; ++i)
 b[i] = b[i-1] + a[i];
}

Load

Store

+
i=0

i=1

i=2

Dependence Analysis

 Has profound effect on Loop Pipelining
 Can lead to difference in performance of more than 100x

 Significant effort spent to improve dependence analysis
 Especially loop-carried dependence analysis

 Added complex range analysis to help

 Uses knowledge of our specialized hardware and

programming model

 Never good enough!

58

LLVM Issues/Wishlist

59

LLVM Issues

 Intrinsics don’t support structs
 We extended CallInst for our intrinsics

 Module pass managers running every analysis on every

function when only requesting a single function

 On-the-fly pass manager not inheriting analyses

 Ran into several scaling problems with LLVM passes
 Often due to significant loop unrolling and inlining

 Loop representation
 Well formed loops are extremely important to us

 Some optimizations introduce extra loops

 while(1) with no return is useful to us

60

LLVM Wishlist

 Conditional preservation of analyses

 Windows debug support

 Improved dependence analysis

61

Thank You Thank You Thank You

References

 Altera OpenCL Example Designs
http://www.altera.com/support/examples/opencl/opencl.html

 Altera OpenCL Best Practices Guide
http://www.altera.com/literature/hb/opencl-sdk/aocl_optimization_guide.pdf

 Stratix V Overview
http://www.altera.com/devices/fpga/stratix-fpgas/stratix-v/stxv-index.jsp

 Cyclone V Overview
http://www.altera.com/devices/fpga/cyclone-v-fpgas/cyv-index.jsp

 Stratix V ALM
www.altera.com/literature/hb/stratix-v/stx5_51002.pdf

http://www.altera.com/support/examples/opencl/opencl.html
http://www.altera.com/support/examples/opencl/opencl.html
http://www.altera.com/literature/hb/opencl-sdk/aocl_optimization_guide.pdf
http://www.altera.com/literature/hb/opencl-sdk/aocl_optimization_guide.pdf
http://www.altera.com/literature/hb/opencl-sdk/aocl_optimization_guide.pdf
http://www.altera.com/literature/hb/opencl-sdk/aocl_optimization_guide.pdf
http://www.altera.com/devices/fpga/stratix-fpgas/stratix-v/stxv-index.jsp
http://www.altera.com/devices/fpga/stratix-fpgas/stratix-v/stxv-index.jsp
http://www.altera.com/devices/fpga/stratix-fpgas/stratix-v/stxv-index.jsp
http://www.altera.com/devices/fpga/stratix-fpgas/stratix-v/stxv-index.jsp
http://www.altera.com/devices/fpga/stratix-fpgas/stratix-v/stxv-index.jsp
http://www.altera.com/devices/fpga/stratix-fpgas/stratix-v/stxv-index.jsp
http://www.altera.com/devices/fpga/stratix-fpgas/stratix-v/stxv-index.jsp
http://www.altera.com/devices/fpga/stratix-fpgas/stratix-v/stxv-index.jsp
http://www.altera.com/devices/fpga/cyclone-v-fpgas/cyv-index.jsp
http://www.altera.com/devices/fpga/cyclone-v-fpgas/cyv-index.jsp
http://www.altera.com/devices/fpga/cyclone-v-fpgas/cyv-index.jsp
http://www.altera.com/devices/fpga/cyclone-v-fpgas/cyv-index.jsp
http://www.altera.com/devices/fpga/cyclone-v-fpgas/cyv-index.jsp
http://www.altera.com/devices/fpga/cyclone-v-fpgas/cyv-index.jsp
http://www.altera.com/devices/fpga/cyclone-v-fpgas/cyv-index.jsp
http://www.altera.com/devices/fpga/cyclone-v-fpgas/cyv-index.jsp
http://www.altera.com/literature/hb/stratix-v/stx5_51002.pdf
http://www.altera.com/literature/hb/stratix-v/stx5_51002.pdf
http://www.altera.com/literature/hb/stratix-v/stx5_51002.pdf

