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FPGAs are Awesome 

 Fully Configurable Architecture 

 Low-Power 

 Customizable I/O 
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FPGA Design Hurdles 

 Traditional FPGA design entry done in hardware 

description languages (HDL) 
 e.g. Verilog or VHDL 

 HDL describe the register transfer level (RTL) 

 Programmer is responsible for describing all the hardware and its behaviour 
in every clock cycle 

 The hardware to describe a relatively small program can take months to 
implement 

 Testing is difficult 

 

 Far fewer hardware designers than software designers 
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Simpler Design Entry 

 Use a higher level of abstraction 
 Easier to describe an algorithm in C than Verilog 

 Increases productivity 

 Simpler to test and verify 

 Increases the size of the developer pool 

 

 Sounds promising, but how can we map a higher level 

language to an FPGA? 
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Our Vision 

 Leverage the software community’s resources 

 

 LLVM is a great compiler framework 
 Mature 

 Robust 

 Well architected 

 Easy to modify and extend 

 Same IR for different input languages 

 

 We modify LLVM to generate Verilog 
 Implemented a custom backend target 
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OpenCL 

 Our higher level language 

 Hardware agnostic compute language 
 Invented by Apple 

 2008 Specification Donated to Khronos Group and Khronos 
Compute Working Group was formed 
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 What does OpenCL give us? 
 Industry standard programming model  
 Aimed at heterogeneous compute 

acceleration 
 Functional portability across platforms 



OpenCL Conformance 

 You must pass conformance to claim OpenCL support 
 Over 8000 tests 
 Only one FPGA vendor has passed conformance 
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The BIG Idea behind OpenCL 

 OpenCL execution model …  
 Define N-dimensional computation domain 

 Execute a kernel at each point in computation domain 

void 

trad_mul(int n,  

         const float *a,  

         const float *b,  

         float *c) 

{ 

  int i; 

  for (i=0; i<n; i++) 

    c[i] = a[i] * b[i];  

} 

Traditional loops 
kernel void 

dp_mul(global const float *a,  

       global const float *b,  

       global float *c) 

{ 

  int id = get_global_id(0); 

 

  c[id] = a[id] * b[id]; 

  

} // execute over “n” work-items 

Data Parallel OpenCL 



FPGAs vs CPUs 

 FPGAs are dramatically different than CPUs 
 

 

 Massive fine-grained parallelism 

 Complete configurability 

 Huge internal bandwidth 

 No callstack 

 No dynamic memory allocation 

 Very different instruction costs 

 No fixed number of program registers 

 No fixed memory system 
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Targeting an Architecture 

 In a CPU, the program is mapped to a fixed architecture 

 

 In an FPGA, there is NO fixed architecture 

 

 The program defines the architecture 

 

 Instead of the architecture constraining the program, 

the program is constrained by the available resources 
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Datapath Architecture 

FPGA datapath ~ Unrolled CPU hardware 
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A simple 3-address CPU 
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Load immediate value into register 

13 

Op 

Val 

Instruction 

Fetch 

Registers 

Aaddr 

Baddr 

Caddr 

PC Load Store 
LdAddr StAddr 

CWriteEnable 

C 

Op 

LdData 

StData 

Op 

CData 



B 

A 

A 
ALU 

 

 

 

 

 

Load memory value into register 
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Store register value into memory 
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Add two registers, store result in register 
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Multiply two registers, store result in register 
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A simple program 

 Mem[100] += 42 * Mem[101] 

 

 CPU instructions: 
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R0  Load Mem[100] 

R1  Load Mem[101] 

R2  Load #42 

R2  Mul R1, R2 

R0  Add R2, R0 

Store R0  Mem[100] 

 



CPU activity, step by step 
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Unroll the CPU hardware… 
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… and specialize by position 
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… and specialize 
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… and specialize 
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… and specialize 
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R0  Load Mem[100] 
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… and specialize 
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Fundamental Datapath 

Instead of a register 

file, live data is carried 

through register 

stages like a pipelined 

CPU instruction 

 

Live ranges define the 

amount of data carried 

at each register stage 



Optimize the Datapath 

27 

R0  Load Mem[100] 

R1  Load Mem[101] 

R2  Load #42 

R2  Mul R1, R2 

R0  Add R2, R0 

Store R0  Mem[100] 

1. Instructions are fixed. 

Remove “Fetch” 

2. Remove unused ALU ops 

3. Remove unused Load / Store 

4. Wire up registers properly!  

And propagate state. 

5. Remove dead data. 

6. Reschedule! 

 



 

FPGA datapath = Your algorithm, in silicon 
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Data parallel kernel 
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__kernel void 
sum(__global const float *a, 
__global const float *b, 
__global float *answer) 
{ 
int xid = get_global_id(0); 
answer[xid] = a[xid] + b[xid]; 
} 

float *a = 

float *b = 

float *answer = 

0 1 2 3 4 5 6 7 

7 6 5 4 3 2 1 0 

7 7 7 7 7 7 7 7 

__kernel void sum( … ); 



Example Datapath for Vector Add 

 On each cycle the portions of the 

datapath are processing different 

threads 

 While thread 2 is being loaded, 

thread 1 is being added, and 

thread 0 is being stored 
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Example Datapath for Vector Add 

 On each cycle the portions of the 

datapath are processing different 

threads 

 While thread 2 is being loaded, 

thread 1 is being added, and 

thread 0 is being stored 
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Example Datapath for Vector Add 

 On each cycle the portions of the 

datapath are processing different 

threads 

 While thread 2 is being loaded, 

thread 1 is being added, and 

thread 0 is being stored 
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Example Datapath for Vector Add 

 On each cycle the portions of the 

datapath are processing different 

threads 

 While thread 2 is being loaded, 

thread 1 is being added, and 

thread 0 is being stored 
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Example Datapath for Vector Add 

 On each cycle the portions of the 

datapath are processing different 

threads 

 While thread 2 is being loaded, 

thread 1 is being added, and 

thread 0 is being stored 
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High Level Datapath Generation 

Compiler Flow 



Compiler Flow 
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AOC 

FPGA 

Programming File 
kernel void 
sum(global float *a, 
    global float *b, 
    global float *c) 
{ 
  int gid = get_global_id(0); 
  c[gid] = a[gid] + b[gid]; 
} 

Source Code Altera Offline Compiler 

 

LLC 

 

 

OPT 

 

 

Clang 

 

Verilog 

Design File 



Compiler Flow 
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produce LLVM IR 

 

Clang 

 



Compiler Flow 
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Middle end 

 
Clang –O3 optimizations followed by 

numerous custom passes to target the FPGA 

architecture 



Compiler Flow 
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AOC 
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kernel void 
sum(global float *a, 
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produce LLVM IR 
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Creates and schedules an elastic pipelined 

datapath and produces Verilog HDL 



Compiler Flow 
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AOC 

FPGA 

Programming File 
kernel void 
sum(global float *a, 
    global float *b, 
    global float *c) 
{ 
  int gid = get_global_id(0); 
  c[gid] = a[gid] + b[gid]; 
} 

Source Code Altera Offline Compiler 
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Design File 

LLVM IR is used to describe a custom 

architecture specific to the program 



Dealing with Resource Constraints 

Branch Conversion 
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Branch Conversion Example 
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Branch Conversion Example 

1. Determine control flow 

to conditionally 

executed basic blocks 
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Branch 
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Branch Conversion Example 

1. Determine control flow 

to conditionally 

executed basic blocks 

2. Predicate instructions 
 A is predicated if the branch 

was false and vice-versa 
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Branch Conversion Example 

1. Determine control flow 

to conditionally 

executed basic blocks 

2. Predicate instructions 
 A is predicated if the branch 

was false and vice-versa 

3. Combine A and B 
 Branch is now unconditional 

 PHIs in C become select 
instructions 
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Branch Conversion Example 

1. Determine control flow 

to conditionally 

executed basic blocks 

2. Predicate instructions 
 A is predicated if the branch 

was false and vice-versa 

3. Combine A and B 
 Branch is now unconditional 

 PHIs in C become select 
instructions 

4. Simplify the CFG 
 Merges remaining blocks 
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All 

Logic 



Branch Conversion 

 Squeezes the majority of the CFG into one basic block 

 

 Saves significant amounts of area 

 

 Increased instruction count in the basic block does not 

adversely affect performance 
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Improving Performance of 

Individual Threads 

Loop Pipelining 



OpenCL Task 

 Kernel operates on a single thread 

 Data for each iteration depends on the previous 

iteration 

 Loop carried dependency bottlenecks performance 
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__kernel void 
accumulate(__global float *a, 
           __global float *b, 
           int n) 
{ 
  for (int i=1; i<n; ++i) 
    b[i] = b[i-1] + a[i]; 
} 



Loop Carried Dependencies 

 Loop-carried dependency:  one iteration of the loop 
depends upon the results of another iteration of the 
loop 

 

 

 

 

 

 

 

 The value of state in iteration 1 depends on the value 
from iteration 0 

 Similarly, iteration 2 depends on the value from iteration 
1, etc 
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kernel void state_machine(ulong n) 
{ 
  t_state_vector state = initial_state(); 
  for (ulong i=0; i<n; i++) { 
    state = next_state( state ); 
    unit y = process( state ); 
    // more work… 
  } 
} 



Loop Carried Dependencies 

 To achieve acceleration, we can pipeline each iteration 

of a loop containing loop carried dependencies 
 Analyze any dependencies between iterations 

 Schedule these operations 

 Launch the next iteration as soon as possible 
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At this point, we can 

launch the next 

iteration 

kernel void state_machine(ulong n) 
{ 
  t_state_vector state = initial_state(); 
  for (ulong i=0; i<n; i++) { 
    state = next_state( state ); 
    unit y = process( state ); 
    // more work… 
  } 
} 



Loop Pipelining Example 

 No Loop Pipelining 
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Pipelined Threads vs. Loop Pipelining 

 So what’s the difference? 

 

 

 

 

 

 

 

 

 Loop Pipelining enables Pipeline Parallelism AND the 

communication of state information between iterations. 
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Accumulator Datapath 

 A new iteration can be launched each cycle 

 Each iteration still takes multiple cycles to complete, 

but subsequent iterations are not bottlenecked 
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Accumulator Datapath 

 A new iteration can be launched each cycle 

 Each iteration still takes multiple cycles to complete, 

but subsequent iterations are bottlenecked 
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__kernel void 
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Accumulator Datapath 

 A new iteration can be launched each cycle 

 Each iteration still takes multiple cycles to complete, 

but subsequent iterations are bottlenecked 
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Accumulator Datapath 

 A new iteration can be launched each cycle 

 Each iteration still takes multiple cycles to complete, 

but subsequent iterations are bottlenecked 
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__kernel void 
accumulate(__global float *a, 
           __global float *b, 
           int n) 
{ 
  for (int i=1; i<n; ++i) 
    b[i] = b[i-1] + a[i]; 
} 

Load 
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Dependence Analysis 

 Has profound effect on Loop Pipelining 
 Can lead to difference in performance of more than 100x 

 

 Significant effort spent to improve dependence analysis 
 Especially loop-carried dependence analysis 

 

 Added complex range analysis to help 

 

 Uses knowledge of our specialized hardware and 

programming model 

 

 Never good enough! 
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LLVM Issues/Wishlist 
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LLVM Issues 

 Intrinsics don’t support structs 
 We extended CallInst for our intrinsics 

 Module pass managers running every analysis on every 

function when only requesting a single function 

 On-the-fly pass manager not inheriting analyses 

 Ran into several scaling problems with LLVM passes 
 Often due to significant loop unrolling and inlining 

 Loop representation 
 Well formed loops are extremely important to us 

 Some optimizations introduce extra loops 

 while(1) with no return is useful to us 
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LLVM Wishlist 

 Conditional preservation of analyses 

 Windows debug support 

 Improved dependence analysis 
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Thank You Thank You Thank You 
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