
Exception handling in
LLVM, from Itanium to

MSVC
Reid Kleckner

David Majnemer

Agenda
● Exception handling: what it is, where it came from
● Introduction to the landingpad model used in LLVM and GCC

○ Elegant simplicity of the landingpad model

● Introduction to the MSVC model
○ Problematic requirements of the MSVC model

● Introduction to the new LLVM IR model
○ Compromise between block scoping and free-form control flow

What is exception handling?
● Provides non-local control flow transfers to suspended frames
● Returns alternative data not described by function return types
● Non-local exits considered important as library layering accumulated
● Bjarne et al design C++ exceptions from 1984-1989
● “Exception handling for C++” is published by Bjarne and Andrew Koenig in

1989

How is exception handling implemented?
● Bjarne and Koenig outlined two implementation strategies in 1989
● Portable exception handling:

○ Built on linked lists and setjmp/longjmp
○ Ideal for C transliteration (CFront)
○ Interoperates across EH-unaware code produced by other vendors

● Efficient exception handling:
○ Built on PC lookup tables that determine which EH actions to take
○ Requires reliable stack unwinding mechanism
○ Need call frame information (CFI) to restore non-volatile registers and locate return addresses

● Different vendors made different choices

Borland implements C++ and SEH in 1993
● Implementation approach similar to “portable” EH described in ‘89
● Windows toolchain ecosystem was diverse, needed interoperability
● SEH allowed recovering from CPU traps (integer divide by zero, etc)
● SEH also allowed resuming in the trapping context

○ Usable for virtual memory tricks or making divide by zero produce a value

● Microsoft adopted SEH for Windows, fs:00 becomes TLS slot for EH

● HP had years of experience getting C++ EH right in multiple compilers
○ Major user of CFront, eventually transitioned to aC++

● HP popularized the landingpad model through the Itanium C++ ABI
● Uses “successive unwinding”: restores the register context of each frame on

the stack with cleanups until the right catch is reached
○ Major departure from ‘89 models, which both pinned objects with destructors in memory

● Language-specific data area (LSDA) contains two tables:
○ Call site table: map from PC range to landingpad label plus action table index
○ Action table: array of type information references and next action chains
○ At most one landingpad label per call

● GCC adopted the Itanium C++ ABI, LLVM followed later

HP landingpad model for Itanium

LLVM IR for landingpads
● Invokes are calls with an unwind

edge
● %ehvals represent an alternate

return value in EAX:EDX on x86
● Landingpad must be first non-phi

instruction in basic block
● Catch handler dispatch uses

compare and branch on selector

define void @f()
 personality i32 (...)* @__gxx_personality_v0 {
 ...
 invoke void @maythrow()
 to label %normal unwind label %lpad
normal:
 ...
lpad:
 %ehvals = landingpad { i8*, i32 }
 catch i8* null
 ...
}

Landingpad selector dispatch example

int main () {
 try {
 maythrow();
 } catch (A) {
 puts("A");
 } catch (B) {
 puts("B");
 }
}

define i32 @main() … {
entry:
 invoke void @maythrow()
 to label %try.cont unwind label %lpad
try.cont:
 ret i32 0
lpad:
 %0 = landingpad { i8*, i32 }
 catch { i8*, i8* }* @_ZTI1A
 catch { i8*, i8* }* @_ZTI1B
 %1 = extractvalue { i8*, i32 } %0, 0
 %2 = extractvalue { i8*, i32 } %0, 1
 %3 = tail call i32
 @llvm.eh.typeid.for(...@_ZTI1A...)
 %isA = icmp eq i32 %2, %3
 br i1 %isA, label %catch.A,
 label %catch.fallthrough

catch.fallthrough:
 %5 = tail call i32
 @llvm.eh.typeid.for(...@_ZTI1B...)
 %isB = icmp eq i32 %2, %5
 br i1 %isB, label %catch.B,
 label %eh.resume

catch.A:
 ...
catch.B:
 …

eh.resume:
 resume { i8*, i32 } %0
}

Advantages of LLVM’s landingpad model
● Basic blocks are single-entry single-exit, simplifying dataflow and SSA

formation
● Keeps control flow graph for EH dispatch in code (conditional branches)

○ SimplifyCFG can and does tail merge similar catch handlers
○ No unsplittable blocks, easier to find insertion points

● Invokes inlined by chaining “ret” to normal label and “resume” to unwind label
● Only one special control transfer: unwind edge from invoke
● Unfortunately, Windows EH does not use landingpads

Windows exception handling model
● Tables map from program state number to “funclet” pointers
● State number tracked through PC tables and explicitly in memory
● Each funclet shares the parent frame via EBP/RBP

○ Runtime provides the “establishing frame pointer” via regparm
○ Funclet assumes SP has dynamically changed, similar to dynamic alloca

● Funclets implement three major actions:
○ SEH filter: Should this exception be caught, retried, or propagated outwards
○ Cleanup: Cleanup code, like C++ destructor calls or finally blocks
○ Catch: User code from the catch block body

Windows exception handling phases
1. Exception is raised to OS
2. Walk stack, call each personality until the exception is claimed

○ The SEH and CLR personalities call active filter funclets during this phase

3. Call each personality again to run cleanups
○ Personality controls what happens if cleanups raise an exception

4. Personality of catching frame handles the exception
○ C++ personality calls catch funclet, uses SEH to detect C++ rethrow

5. Personality resets register context to the parent frame

Windows exception handling implications
● Contrast to successive unwinding: Only one register context reset
● All EH occurs with the exceptional frame on the stack!

○ The C++ exception object lives in the frame of the throw
○ Stack pointer is reset at the closing curly of the catch block

● Successively unwinding to landingpads cannot be compatible with MSVC EH
○ Mingw will never have MSVC-compatible exception handling

● Chose to use MSVC personality rather than invent new split-frame personality

Possible strategy: frontend outlines funclets
● Frontend outlining would satisfy the personality routine
● Good separation of concerns, keep C++ knowledge in Clang
● Creates massive optimization barrier

○ Local optimization problems become much harder interprocedural problems
○ No ability to reason about escaped local variables used in funclets

● Personality provides frame pointer, would need to teach backend how to
reason about the layout of another function’s frame

○ Lambdas and blocks are easy because we control the call site
○ Parent function cannot be inlined, doing so would perturb the frame

● Ultimately decided to outline SEH filters in the frontend
○ Difficult to optimize, impossible to reason about control flow

● Let’s try backend outlining with landingpads...

Pattern match away landingpads
● Attempted to use landingpads and a pile of intrinsics, outline catches and

cleanups into new functions during WinEHPrepare
● Funclet bounds were inferred from intrinsic calls (@llvm.eh.begincatch, etc)
● SSA values live across funclet bounds were demoted (similar to SJLJ EH)

○ Shared demoted stack allocations with @llvm.localescape / @llvm.localrecover

● Pattern matched selector comparisons to recover dispatch logic data

Landingpads, MSVC-style
throw:
 invoke void @foo() … unwind label %lp

lp:
 %sel = landingpad i32 catch %rtti* @A.type, catch %rtti* @B.type
 %forA = call i32 @llvm.eh.typeid.for(%rtti* @A.type)
 %isA = icmp eq i32 %sel, %forA
 br i1 %isA, label %catch.A, label %catch.fallthrough

catch.fallthrough:
 %forB = call i32 @llvm.eh.typeid.for(%rtti* @B.type)
 %isB = icmp eq i32 %sel, %forB
 br i1 %isA, label %catch.B, label %eh.resume

throw:
 invoke void @foo() … unwind label %lp

lp:
 %sel = landingpad i32 catch %rtti* @A.type, catch %rtti* @B.type
 %forA = call i32 @llvm.eh.typeid.for(%rtti* @A.type)
 %isA = icmp eq i32 %sel, %forA
 br i1 %isA, label %catch.A, label %catch.fallthrough

catch.fallthrough:
 %forB = call i32 @llvm.eh.typeid.for(%rtti* @B.type)
 %isB = icmp eq i32 %sel, %forB
 br i1 %isA, label %catch.B, label %eh.resume

Landingpads, MSVC-style

Landingpads, MSVC-style: hard mode
throw:
 invoke void @foo() … unwind label %lp

lp:
 %sel = landingpad i32 catch %rtti* @A.type, catch %rtti* @B.type
 %forA = call i32 @llvm.eh.typeid.for(%rtti* @A.type)
 %forB = call i32 @llvm.eh.typeid.for(%rtti* @B.type)
 %isA = icmp eq i32 %sel, %forA
 %isB = icmp eq i32 %sel, %forB
 %isAorB = or i1 %isA, %isB
 br i1 %isAorB, label %catch.AorB, label %eh.resume

Landingpads, MSVC-style: hard mode
throw:
 invoke void @foo() … unwind label %lp

lp:
 %sel = landingpad i32 catch %rtti* @A.type, catch %rtti* @B.type
 %forA = call i32 @llvm.eh.typeid.for(%rtti* @A.type)
 %forB = call i32 @llvm.eh.typeid.for(%rtti* @B.type)
 %isA = icmp eq i32 %sel, %forA
 %isB = icmp eq i32 %sel, %forB
 %isAorB = or i1 %isA, %isB
 br i1 %isAorB, label %catch.AorB, label %eh.resume

Lesson

Turning apple sauce back into apples does not work!

Other lessons learned
● Discovered lexical scoping requirements in tables

○ Previously believed we could produce denormalized tables: try ranges around every invoke

● LLVM IR does not have scope information! It is a graph
○ Lack of nesting information ensured our demise

● The compiler is required to emit code+tables which are lexically nested
○ Tables + runtime must agree on current state of the program

● TryBlockMap is an array of: tuple of states (TryLow, TryHigh, CatchHigh) +
array of catch handlers

○ Intervals must be non-overlapping or contained within another interval
○ Catch handlers must have distinct addresses, no reuse permitted

● Forces the compiler’s output to resemble valid C++ source code
○ Doesn’t necessarily need to have the same scopes as the source program

C++ personality scoping impositions

TryBlockMap state numbering constraints
Program statetry {

 f(0);
} catch (...) {
 try {
 f(1);
 } catch (...) {
 f(2);
 }
}

try {
 f(3);
} catch (...) {
 f(4);
}

TryLow

TryHigh

CatchHigh

Fully contained

Non-overlapping

0

1

2

3

4
5

6

7

8

● New family of “pad” instructions representing funclet starts
○ catchpad, cleanuppad

● New family of terminator instructions representing funclet returns
○ catchret, cleanupret

● New family of instructions to inform LLVM of lexical nesting
○ catchendpad, cleanupendpad

● And last, but not least, a new type: token

MSVC-style EH, take two

MSVC-style EH, take two
● SSA values with token type cannot be obscured

○ Cannot be PHI’d, cannot be stored/loaded to memory, cannot be in a select, etc.
○ Makes it possible to associate catchpad with catchret, cleanuppad with cleanupret

● Unwind edges inform us of lexical scopes
○ Instructions which unwind to catchendpad are “exiting” a catch handler
○ Instructions which unwind to cleanupendpad are “exiting” a cleanup

New EH: Catches

int main () {
 try {
 maythrow();
 } catch (A) {
 handleA();
 } catch (B) {
 handleB();
 }
}

Throwing the Exception

int main () {
 try {
 maythrow();
 } catch (A) {
 handleA();
 } catch (B) {
 handleB();
 }
}

…
invoke void @maythrow()

to label %try.cont
unwind label %dispatch.a

...

Catching the Exception

int main () {
 try {
 maythrow();
 } catch (A) {
 handleA();
 } catch (B) {
 handleB();
 }
}

dispatch.a:
 %cpA = catchpad [%rtti.A* @A.type]

 to label %handle.a
 unwind label %dispatch.b

handle.a:
 invoke void @handleA()

 to label %catchret.A
 unwind label %catchend

catchret.a:
 catchret %cpA to label %exit

Catching the Exception

int main () {
 try {
 maythrow();
 } catch (A) {
 handleA();
 } catch (B) {
 handleB();
 }
}

dispatch.b:
 %cpB = catchpad [%rtti.B* @B.type]

 to label %handle.b
 unwind label %catchend

handle.b:
 invoke void @handleB()

 to label %catchret.B
 unwind label %catchend

catchret.b:
 catchret %cpB to label %exit

Catching the Exception: catchendpad
dispatch.a:
 %cpA = catchpad [...] to label %handle.a unwind label %handle.b
handle.a:
 invoke void @handleA() to ... unwind label %catchend
dispatch.b:
 %cpB = catchpad [%rtti.B* @B.type] to label %handle.b unwind label %catchend
handle.b:
 invoke void @handleB() to ... unwind label %catchend
catchend:
 catchendpad unwind to caller

Result: it “just” works
● For the most part, the new IR survives LLVM’s optimizers
● New IR dramatically simplified WinEHPrepare

○ Removed ~2500 lines of broken code, currently only ~1200 lines of working code

● SimplifyCFG still merges blocks in two funclets ending in unreachable
○ WinEHPrepare has to undo this

● WinEHPrepare still demotes SSA values live across funclet boundaries
○ No pattern matching necessary
○ Register allocator would do better spill placement

Future work
● Inlining into cleanups currently disabled

○ Need to associate call sites with parent funclet
○ Use operand bundles? Outline in WinEHPrepare?

● Funclet parent relationship is implicit
○ Relationship is discovered via unwind edges
○ Experiment with explicit parents?

● Push funclet spill insertion down into register allocator
● Make catchpad a switch? Make it splittable?

Conclusion
● Clang now has MSVC compatible exception handling
● Clang has partial support for SEH, does not model non-call exceptions

○ Need a way to model edges from potentially trapping instructions

● New EH representation preserves core LLVM invariants (SSA!)
○ Relatively few changes required to most passes

● Work ongoing to simplify new representation

