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● Possibly already contains pieces of novel work
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Future:

● Cache results
● Provide finer-grained interface (e.g. pairs of instructions)



Related Work

● A lot of time was dedicated on how to deduce dependence vectors

○ Direction / Dinstance vectors



Related Work

● A lot of time was dedicated on how to deduce dependence vectors

○ Direction / Dinstance vectors

● Later I found out that most of this work was already published in [1]

[1] G. Goff, K. Kennedy, C. Tseng, Practical Dependence Testing, Proceedings of the ACM SIGPLAN '91 
Conference on Programming Language Design and Implementation, June 26-28, 1991

http://softlib.rice.edu/pub/CRPC-TRs/reports/CRPC-TR90103-S.pdf
http://softlib.rice.edu/pub/CRPC-TRs/reports/CRPC-TR90103-S.pdf
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● Distance from the read to the write
● When this distance is negative, we have an anti-dependence in memory 

access space
○ The read happens before the write

● In iteration space, we have to reflect the vector
● This idea extends to N dimensions

○ When the memory access vector “looks” to previous iterations

Reflecting Dependence Vectors
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Recent work: 

● Take all the pairs of dimensions with the dimension you’re vectorizing.
● If at least one causes dependence, the vectorization factor is the distance 

in the dimension you’re vectorizing.
○ Falls back to 2D tests.

● Otherwise, it’s vectorizable for any factor
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● Easy to analyze a perfect loop nest
● View the imperfect nest as a tree
● Analyze each path to a leaf as a perfect loop nest
● Take the minimum vectorization factor

Analyzing Imperfect Loop Nests



Future!
● Cost-Modeling (with Machine Learning)
● Analysis for Tensorization
● Loop Transformation Framework
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