
Outer-Loop Vectorization Legality 
Analysis for LLVM

One Step Closer to a Production Vectorizer, the Region Vectorizer

Thanks to Simon Moll for guiding me through this research!

Stefanos Baziotis
NEC Corporation and University of Athens

users.uoa.gr/~sdi1600105/
stefanos.baziotis@gmail.com

https://github.com/cdl-saarland/rv
https://compilers.cs.uni-saarland.de/people/moll/
http://users.uoa.gr/~sdi1600105/index.html
http://users.uoa.gr/~sdi1600105/


Still in Early Development

● You can follow it on github.com/baziotis/llvm-project/tree/feature/lda

https://github.com/baziotis/llvm-project/tree/feature/lda


Still in Early Development

● You can follow it on github.com/baziotis/llvm-project/tree/feature/lda
● Possibly already contains pieces of novel work

https://github.com/baziotis/llvm-project/tree/feature/lda


Interface



Interface

Future:

● Cache results



Interface

Future:

● Cache results
● Provide finer-grained interface (e.g. pairs of instructions)



Related Work

● A lot of time was dedicated on how to deduce dependence vectors

○ Direction / Dinstance vectors



Related Work

● A lot of time was dedicated on how to deduce dependence vectors

○ Direction / Dinstance vectors

● Later I found out that most of this work was already published in [1]

[1] G. Goff, K. Kennedy, C. Tseng, Practical Dependence Testing, Proceedings of the ACM SIGPLAN '91 
Conference on Programming Language Design and Implementation, June 26-28, 1991

http://softlib.rice.edu/pub/CRPC-TRs/reports/CRPC-TR90103-S.pdf
http://softlib.rice.edu/pub/CRPC-TRs/reports/CRPC-TR90103-S.pdf


● Distance from the read to the write

Reflecting Dependence Vectors



● Distance from the read to the write
● When this distance is negative, we have an anti-dependence in memory 

access space
○ The read happens before the write

Reflecting Dependence Vectors



● Distance from the read to the write
● When this distance is negative, we have an anti-dependence in memory 

access space
○ The read happens before the write

● In iteration space, we have to reflect the vector

Reflecting Dependence Vectors



● Distance from the read to the write
● When this distance is negative, we have an anti-dependence in memory 

access space
○ The read happens before the write

● In iteration space, we have to reflect the vector
● This idea extends to N dimensions

○ When the memory access vector “looks” to previous iterations

Reflecting Dependence Vectors



Analyzing N-Dimensional Loop Nests

Recent work: 

● Take all the pairs of dimensions with the dimension you’re vectorizing.



Recent work: 

● Take all the pairs of dimensions with the dimension you’re vectorizing.
● If at least one causes dependence, the vectorization factor is the distance 

in the dimension you’re vectorizing.
○ Falls back to 2D tests.

Analyzing N-Dimensional Loop Nests



Recent work: 

● Take all the pairs of dimensions with the dimension you’re vectorizing.
● If at least one causes dependence, the vectorization factor is the distance 

in the dimension you’re vectorizing.
○ Falls back to 2D tests.

● Otherwise, it’s vectorizable for any factor

Analyzing N-Dimensional Loop Nests



Analyzing Imperfect Loop Nests

● Easy to analyze a perfect loop nest



● Easy to analyze a perfect loop nest
● View the imperfect nest as a tree

Analyzing Imperfect Loop Nests



● Easy to analyze a perfect loop nest
● View the imperfect nest as a tree
● Analyze each path to a leaf as a perfect loop nest

Analyzing Imperfect Loop Nests



● Easy to analyze a perfect loop nest
● View the imperfect nest as a tree
● Analyze each path to a leaf as a perfect loop nest
● Take the minimum vectorization factor

Analyzing Imperfect Loop Nests



Future!
● Cost-Modeling (with Machine Learning)
● Analysis for Tensorization
● Loop Transformation Framework



Thank you!

Stefanos Baziotis
NEC Corporation and University of Athens

users.uoa.gr/~sdi1600105/
stefanos.baziotis@gmail.com

http://users.uoa.gr/~sdi1600105/index.html
http://users.uoa.gr/~sdi1600105/

