
Adding CUDA® Support to Cling:JIT Compile to GPUs

S. Ehrig1, A. Huebl1,2, A. Naumann3 and V. Vassilev3

1 Helmholtz-Zentrum Dresden – Rossendorf
2 Lawrence Berkeley National Laboratory
3 CERN

2020 Virtual LLVM Developers' Meeting

October 6th-8th 2020

Research Group Computer Assisted Radiation Physics · FWKT · Simeon Ehrig · s.ehrig@hzdr.de · www.hzdr.de

Published under CC BY-SA 4.0 DOI:10.5281/zenodo.4021877

Introduction

Using Cling

October 6th - 8th 2020 Adding CUDA® Support to Cling:JIT Compile to GPUs3

#include "cling/Interpreter/Interpreter.h"

int main(int argc, char *argv){
auto cling = cling::Interpreter(argc, argv);

 return 0;
}

Properties

■ Read-Eval-Print loop principle
■ Does not interpret → the code is JIT compiled
■ Fully compatible to existing libraries

■ Can include header files, load unmodified shared libraries and JIT compile C++ source code
■ Modifications on syntax and semantic of C++

■ No main() function → everything in global space

■ Missing semicolon at the end of the statement will print the return value

■ Just allowed in the Cling terminal interface or Jupyter Notebook

4 October 6th - 8th 2020 Adding CUDA® Support to Cling:JIT Compile to GPUs

CPU/GPU Model

5

CPU GPU

Sources: Nvidia. CUDA Reference Guide
October 6th - 8th 2020 Adding CUDA® Support to Cling:JIT Compile to GPUs

CPU/GPU Model

6

CPU GPU

Sources: Nvidia. CUDA Reference Guide

■ Why GPU: Better performance for certain algorithms
■ Why CUDA: existing algorithms and widest distribution

October 6th - 8th 2020 Adding CUDA® Support to Cling:JIT Compile to GPUs

Basic concept

Extendable application flow

8

TU

October 6th - 8th 2020 Adding CUDA® Support to Cling:JIT Compile to GPUs

Extendable application flow

9

TU Transaction 1
(initial state)

October 6th - 8th 2020 Adding CUDA® Support to Cling:JIT Compile to GPUs

Extendable application flow

10

TU Transaction 1
(initial state)

Transaction 2
int i = 3;

October 6th - 8th 2020 Adding CUDA® Support to Cling:JIT Compile to GPUs

Extendable application flow

11

TU Transaction 1
(initial state)

Transaction 2
int i = 3;

Transaction 3
i = i + 3;

October 6th - 8th 2020 Adding CUDA® Support to Cling:JIT Compile to GPUs

Creating a single transaction

12

Input

Metaparser

Parser

AST-Transformer

Code Generator

Executor

October 6th - 8th 2020 Adding CUDA® Support to Cling:JIT Compile to GPUs

Creating a single transaction

13

Input
foo()

October 6th - 8th 2020 Adding CUDA® Support to Cling:JIT Compile to GPUs

Class references:
cling::UserInterface

Creating a single transaction

14

Input

Metaparser

void __cling_Un1Qu32(void* vpClingValue)
{
 foo();
}

Tasks of the Metaparser
■ Transforms source code
■ Detects meta commands

■ e.g.: .L libz.so
■ Linking the shared library z

October 6th - 8th 2020 Adding CUDA® Support to Cling:JIT Compile to GPUs

Class references:
cling::Metaprocessor
cling::utils::getWrapPoint

Creating a single transaction

15

Input

Metaparser

Parser
Properties of the Parser
■ Non-modified Clang parser
■ Needs valid C++ code

October 6th - 8th 2020 Adding CUDA® Support to Cling:JIT Compile to GPUs

Class references:
cling::IncrementalParser
clang::Parser
clang::ASTConsumer

Creating a single transaction

16

Input

Metaparser

Parser

AST-Transformer

Tasks of the AST-Transformer
■ Enables functionality

■ e.g. CUDA device kernel inliner
■ Adds error protection

■ e.g. nullptr access
■ Adds cling specific features

■ Shadow namespaces for
redefinition

October 6th - 8th 2020 Adding CUDA® Support to Cling:JIT Compile to GPUs

Class references:
cling::ASTTransformer
llvm::legacy::PassManager

Creating a single transaction

17

Input

Metaparser

Parser

AST-Transformer

Code Generator

push rbp
mov rbp, rsp
sub rsp, 8
mov QWORD PTR [rbp-8], rdi
call foo()
nop
leave
ret

October 6th - 8th 2020 Adding CUDA® Support to Cling:JIT Compile to GPUs

Class references:
cling::IncrementalJIT
llvm::orc

Creating a single transaction

18

Input

Metaparser

Parser

AST-Transformer

Code Generator

Executor

foo()
(int) 3

October 6th - 8th 2020 Adding CUDA® Support to Cling:JIT Compile to GPUs

Class references:
cling::IncrementalExecutor

Challenges

Challenges

1) Is interactive CUDA C++ possible?

■ The driver API allows it, but we want to use the runtime API

■ Answered with many experiments with modified LLVM IR and prototypes

20 October 6th - 8th 2020 Adding CUDA® Support to Cling:JIT Compile to GPUs

Challenges

1) Is interactive CUDA C++ possible?

■ The driver API allows it, but we want to use the runtime API

■ Answered with many experiments with modified LLVM IR and prototypes
2) How does Cling understand CUDA C++?

■ CUDA C++ is not valid C/C++ → e.g. foo<<<1,1>>>();

■ Google‘s GPUCC project solved the problem for the compiler pipeline → only needed to be
activated in Cling

■ Metaparser does not use the Clang parser

21 October 6th - 8th 2020 Adding CUDA® Support to Cling:JIT Compile to GPUs

Sources: Google. gpucc: An Open-Source GPGPU Compiler

Challenges

1) Is interactive CUDA C++ possible?

■ The driver API allows it, but we want to use the runtime API

■ Answered with many experiments with modified LLVM IR and prototypes
2) How does Cling understand CUDA C++?

■ CUDA C++ is not valid C/C++ → e.g. foo<<<1,1>>>();

■ Google‘s GPUCC project solved the problem for the compiler pipeline → only needed to be
activated in Cling

■ Metaparser does not use the Clang parser

3)How to integrate the device pipeline?

■ Cling was not designed for a second compiler pipeline

■ Solved a lot of different implementation tasks

22 October 6th - 8th 2020 Adding CUDA® Support to Cling:JIT Compile to GPUs

Sources: Google. gpucc: An Open-Source GPGPU Compiler

General Problems

■ CUDA is proprietary

■ In general, the documentation is good …

■ … but some details are not documented → black box testing

23 October 6th - 8th 2020 Adding CUDA® Support to Cling:JIT Compile to GPUs

General Problems

■ CUDA is proprietary

■ In general, the documentation is good …

■ … but some details are not documented → black box testing
■ Documentation

■ The whole software stack containing Cling, Clang and LLVM is really complex and I had to
learn a lot

■ The LLVM documentation is really good

■ The Clang documentation was okay

■ The Cling documentation is rudimentary and there are no other similar projects

24 October 6th - 8th 2020 Adding CUDA® Support to Cling:JIT Compile to GPUs

General Problems

■ CUDA is proprietary

■ In general, the documentation is good …

■ … but some details are not documented → black box testing
■ Documentation

■ The whole software stack containing Cling, Clang and LLVM is really complex and I had to
learn a lot

■ The LLVM documentation is really good

■ The Clang documentation was okay

■ The Cling documentation is rudimentary and there are no other similar projects
■ The CUDA Runtime API was not used interactively until now

■ No experience

■ Some workarounds necessary

25 October 6th - 8th 2020 Adding CUDA® Support to Cling:JIT Compile to GPUs

Implementation

General Implementation

27

Input
Source
Code
Trans-
former

AST
Trans-
former

Parser x86
Backend

Exe-
cutor

CUDA
Runtime

AST
Trans-
former

Parser

Fatbin
Wrapper

C++
Code

Modified
C++
Code

Modified
C++
Code

C++
Code

AST

AST Modified
AST

PTX
Code

Fatbinary
Code

Modified
AST

x86
Machine

Code

Device
Code

 PTX
 Back-

end

October 6th - 8th 2020 Adding CUDA® Support to Cling:JIT Compile to GPUs

Versions:
Cling 0.7
Clang/LLVM 5.0

General Implementation

28

Input
Source
Code
Trans-
former

AST
Trans-
former

Parser x86
Backend

Exe-
cutor

CUDA
Runtime

AST
Trans-
former

Parser

Fatbin
Wrapper

C++
Code

Modified
C++
Code

Modified
C++
Code

C++
Code

AST

AST Modified
AST

PTX
Code

Fatbinary
Code

Modified
AST

x86
Machine

Code

Device
Code

cling::Metaprocessor
cling::utils::getWrapPoint

cling::IncrementalParser
clang::Parser
clang::ASTConsumer

cling::IncrementalCUDADeviceCompiler
cling::Interpreter
llvm::NVPTX

cling::IncrementalJIT
llvm::orc

cling::Interpreter
cling::ASTTranformer
clang::Decl llvm::legacy::PassManager libcuda..so

cling::IncrementalExecutor

 PTX
 Back-

end

October 6th - 8th 2020 Adding CUDA® Support to Cling:JIT Compile to GPUs

Detail Problem: Metaparser + CUDA

■ Problem

■ The Metaparser is completely self-written and parses the “interactive” C++ semantic and the
meta commands of Cling

■ The semantic of C++ is complex, the Cling extension makes it even more complex and the
CUDA extension too

■ A lot of implementation work is necessary to cover all cases
■ Solution

■ Still looking for an optimum solution

■ The most important cases are covered

■ Raw input mode as workaround
■ Possible improvements

■ Modifying the Clang parser to handle the “interactive” C++ semantic of Cling

29 October 6th - 8th 2020 Adding CUDA® Support to Cling:JIT Compile to GPUs

Function references:
cling::utils::getWrapPoint

Detail Problem: Catching errors

■ Problem

■ The interpreter runtime and the user code use the same process and memory space. If a
segmentation fault occurs in the user code, the entire interpreter crashes.

■ Solution

■ Catch the errors with code analysis before the code is executed.

■ Current solution is not generally applicable
■ e.g. Segmentation faults via indirect pointers

30 October 6th - 8th 2020 Adding CUDA® Support to Cling:JIT Compile to GPUs

Detail Problem: Updating the Clang/LLVM base

■ Problems

■ Each new Clang/LLVM version supports new CUDA versions, C++ features and has a lot of
bug fixes especially with respect to CUDA.

■ The C++ API is not stable and changes continuously. The JIT backend is also continuously
developed further.

■ Cling requires a patched version of Clang/LLVM.

■ Updating the Clang specific patches causes a lot of work.
■ Possible Solution

■ RFC for simple Clang REPL by Vassil Vassilev (August 2020)

■ Move as many REPL specific patches as possible upstream to Clang

31 October 6th - 8th 2020 Adding CUDA® Support to Cling:JIT Compile to GPUs

What is still missing

■ Some C++ and CUDA statements, although supported by
Clang 5.0 on CUDA 8.0

■ e.g. CUDA __constant__ memory

■ and CUDA global __device__ memory
■ Not all Cling features work with CUDA yet

■ e.g. redefinition of kernels via namespace shadowing
■ Metaparser does not detect all valid CUDA C++ statements
■ Error catching needs to be improved

32 October 6th - 8th 2020 Adding CUDA® Support to Cling:JIT Compile to GPUs

Application Areas

Application areas

■ Cling was initially developed for large data analysis in HEP physics
■ Big, interactive simulation with GPUs
■ Teaching GPU programming
■ Easing development and debugging

34 October 6th - 8th 2020 Adding CUDA® Support to Cling:JIT Compile to GPUs

https://github.com/alpaka-group/alpaka https://github.com/ComputationalRadiationPhysics/picongpu/

Summary

Summary

■ First interactive C++ JIT compiler for the CUDA runtime API
■ Added a dual compiler instance concept to Cling, which can be used for

other GPU APIs (AMD, Intel)
■ Most features already upstream in cling master
■ Interactive CUDA C++ in Jupyter Notebook enables new areas of

application

■ Data analysis in notebooks with GPUs

■ Big, interactive simulations with GPUs

■ Teaching GPU programming

■ Easing development and debugging

36 October 6th - 8th 2020 Adding CUDA® Support to Cling:JIT Compile to GPUs

Versions:
Cling 0.7
Clang/LLVM 5.0

Detail Problem: Clang CUDA expected a completed TU

■ Problem

■ How does CUDA register kernels? No official documentation.

■ The Compiler generates the __cuda_module_ctor and __cuda_module_dtor functions which
register and unregister the kernels and register the functions in the global constructor and
destructor.

■ Cling creates the functions for each transaction. But Cling is lazy and only translates the first
occurrence of __cuda_module_ctor into machine code and reuses it for each transaction. So
you can only register one kernel in each cling instance.

■ Solution

■ Make the function names __cuda_module_ctor and __cuda_module_dtor unique.

37 October 6th - 8th 2020 Adding CUDA® Support to Cling:JIT Compile to GPUs

Class references:
UnqiueCUDACtorDtorName

Detail Problem: Embedding the Fatbin Generator

■ Problem

■ The LLVM IR code of the device compiler pipeline is translated into Nvidia PTX code (a kind of
assembler) and embedded in a fatbinary file (struct with meta data and ptx code).

■ Compared to the PTX code, the fatbin struct is not officially specified. Only Nvidia’s external
fatbin tool is available for embedding PTX code in the fatbin struct.

■ Solution

■ Reimplementation of the fatbin tool based on a header file from the CUDA SDK in “llvm-
project-cxxjit”

■ Thanks to Hal Finkel

38 October 6th - 8th 2020 Adding CUDA® Support to Cling:JIT Compile to GPUs

Class references:
cling::IncrementalCUDADeviceCompiler

	Slide 1
	Slide 2
	Qui cum nonseque magnihicia
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

