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Introduction



Using Cling
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#include "cling/Interpreter/Interpreter.h"

int main(int argc, char *argv){
auto cling = cling::Interpreter(argc, argv);

       return 0;
} 



Properties

■ Read-Eval-Print loop principle
■ Does not interpret → the code is JIT compiled
■ Fully compatible to existing libraries

■ Can include header files, load unmodified shared libraries and JIT compile C++ source code
■ Modifications on syntax and semantic of C++

■ No main() function → everything in global space

■ Missing semicolon at the end of the statement will print the return value

■ Just allowed in the Cling terminal interface or Jupyter Notebook
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CPU/GPU Model
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CPU GPU

Sources: Nvidia. CUDA Reference Guide
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CPU/GPU Model

6

CPU GPU

Sources: Nvidia. CUDA Reference Guide

■ Why GPU: Better performance for certain algorithms
■ Why CUDA: existing algorithms and widest distribution
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Basic concept



Extendable application flow
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TU
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Extendable application flow

9

TU Transaction 1 
(initial state)
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Extendable application flow
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TU Transaction 1 
(initial state)

Transaction 2 
int i = 3;
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Extendable application flow
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TU Transaction 1 
(initial state)

Transaction 2 
int i = 3;

Transaction 3 
i = i + 3;
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Creating a single transaction
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Input

Metaparser

Parser

AST-Transformer

Code Generator

Executor
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Creating a single transaction

13

Input
foo()
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Class references:
cling::UserInterface



Creating a single transaction
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Input

Metaparser

void __cling_Un1Qu32(void* vpClingValue) 
{
   foo();
}

Tasks of the Metaparser
■ Transforms source code 
■ Detects meta commands

■ e.g.: .L libz.so
■ Linking the shared library z
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Class references:
cling::Metaprocessor
cling::utils::getWrapPoint



Creating a single transaction
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Input

Metaparser

Parser
Properties of the Parser
■ Non-modified Clang parser
■ Needs valid C++ code

October 6th - 8th 2020 Adding CUDA® Support to Cling:JIT Compile to GPUs

Class references:
cling::IncrementalParser
clang::Parser
clang::ASTConsumer



Creating a single transaction
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Input

Metaparser

Parser

AST-Transformer

Tasks of the AST-Transformer
■ Enables functionality

■ e.g. CUDA device kernel inliner
■ Adds error protection

■ e.g. nullptr access
■ Adds cling specific features

■ Shadow namespaces for 
redefinition
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Class references:
cling::ASTTransformer
llvm::legacy::PassManager



Creating a single transaction
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Input

Metaparser

Parser

AST-Transformer

Code Generator

push    rbp
mov     rbp, rsp
sub      rsp, 8
mov     QWORD PTR [rbp-8], rdi
call      foo()
nop
leave
ret
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Class references:
cling::IncrementalJIT
llvm::orc



Creating a single transaction
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Input

Metaparser

Parser

AST-Transformer

Code Generator

Executor

foo()
(int) 3
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Class references:
cling::IncrementalExecutor



Challenges



Challenges

1) Is interactive CUDA C++ possible?

■ The driver API allows it, but we want to use the runtime API

■ Answered with many experiments with modified LLVM IR and prototypes
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Challenges

1) Is interactive CUDA C++ possible?

■ The driver API allows it, but we want to use the runtime API

■ Answered with many experiments with modified LLVM IR and prototypes
2) How does Cling understand CUDA C++?

■ CUDA C++ is not valid C/C++ → e.g. foo<<<1,1>>>();

■ Google‘s GPUCC project solved the problem for the compiler pipeline → only needed to be 
activated in Cling

■ Metaparser does not use the Clang parser

21 October 6th - 8th 2020 Adding CUDA® Support to Cling:JIT Compile to GPUs

Sources: Google. gpucc: An Open-Source GPGPU Compiler



Challenges

1) Is interactive CUDA C++ possible?

■ The driver API allows it, but we want to use the runtime API

■ Answered with many experiments with modified LLVM IR and prototypes
2) How does Cling understand CUDA C++?

■ CUDA C++ is not valid C/C++ → e.g. foo<<<1,1>>>();

■ Google‘s GPUCC project solved the problem for the compiler pipeline → only needed to be 
activated in Cling

■ Metaparser does not use the Clang parser

3)How to integrate the device pipeline?

■ Cling was not designed for a second compiler pipeline

■ Solved a lot of different implementation tasks
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Sources: Google. gpucc: An Open-Source GPGPU Compiler



General Problems

■ CUDA is proprietary

■ In general, the documentation is good …

■ … but some details are not documented → black box testing 
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General Problems

■ CUDA is proprietary

■ In general, the documentation is good …

■ … but some details are not documented → black box testing 
■ Documentation

■ The whole software stack containing Cling, Clang and LLVM is really complex and I had to 
learn a lot

■ The LLVM documentation is really good

■ The Clang documentation was okay

■ The Cling documentation is rudimentary and there are no other similar projects
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General Problems

■ CUDA is proprietary

■ In general, the documentation is good …

■ … but some details are not documented → black box testing 
■ Documentation

■ The whole software stack containing Cling, Clang and LLVM is really complex and I had to 
learn a lot

■ The LLVM documentation is really good

■ The Clang documentation was okay

■ The Cling documentation is rudimentary and there are no other similar projects
■ The CUDA Runtime API was not used interactively until now

■ No experience

■ Some workarounds necessary
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Implementation



General Implementation
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Versions:
Cling 0.7
Clang/LLVM 5.0



General Implementation
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Detail Problem: Metaparser + CUDA

■ Problem 

■ The Metaparser is completely self-written and parses the “interactive” C++ semantic and the 
meta commands of Cling

■ The semantic of C++ is complex, the Cling extension makes it even more complex and the 
CUDA extension too

■ A lot of implementation work is necessary to cover all cases
■ Solution

■ Still looking for an optimum solution 

■ The most important cases are covered

■ Raw input mode as workaround 
■ Possible improvements

■ Modifying the Clang parser to handle the “interactive” C++ semantic of Cling
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Function references:
cling::utils::getWrapPoint



Detail Problem: Catching errors

■ Problem 

■ The interpreter runtime and the user code use the same process and memory space. If a 
segmentation fault occurs in the user code, the entire interpreter crashes.

■ Solution

■ Catch the errors with code analysis before the code is executed.

■ Current solution is not generally applicable
■ e.g. Segmentation faults via indirect pointers
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Detail Problem: Updating the Clang/LLVM base

■ Problems 

■ Each new Clang/LLVM version supports new CUDA versions, C++ features and has a lot of 
bug fixes especially with respect to CUDA.

■ The C++ API is not stable and changes continuously. The JIT backend is also continuously 
developed further.

■ Cling requires a patched version of Clang/LLVM.

■ Updating the Clang specific patches causes a lot of work.
■ Possible Solution

■ RFC for simple Clang REPL by Vassil Vassilev (August 2020)

■ Move as many REPL specific patches as possible upstream to Clang
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What is still missing

■ Some C++ and CUDA statements, although supported by 
Clang 5.0 on CUDA 8.0

■ e.g. CUDA __constant__ memory 

■ and CUDA global __device__ memory
■ Not all Cling features work with CUDA yet

■ e.g. redefinition of kernels via namespace shadowing
■ Metaparser does not detect all valid CUDA C++ statements
■ Error catching needs to be improved
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Application Areas



Application areas

■ Cling was initially developed for large data analysis in HEP physics
■ Big, interactive simulation with GPUs
■ Teaching GPU programming
■ Easing development and debugging
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https://github.com/alpaka-group/alpaka https://github.com/ComputationalRadiationPhysics/picongpu/



Summary



Summary

■ First interactive C++ JIT compiler for the CUDA runtime API
■ Added a dual compiler instance concept to Cling, which can be used for 

other GPU APIs (AMD, Intel)
■ Most features already upstream in cling master
■ Interactive CUDA C++ in Jupyter Notebook enables new areas of 

application

■ Data analysis in notebooks with GPUs

■ Big, interactive simulations with GPUs

■ Teaching GPU programming

■ Easing development and debugging
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Versions:
Cling 0.7
Clang/LLVM 5.0



Detail Problem: Clang CUDA expected a completed TU

■ Problem 

■ How does CUDA register kernels? No official documentation.

■ The Compiler generates the __cuda_module_ctor and __cuda_module_dtor functions which 
register and unregister the kernels and register the functions in the global constructor and 
destructor.

■ Cling creates the functions for each transaction. But Cling is lazy and only translates the first 
occurrence of __cuda_module_ctor into machine code and reuses it for each transaction. So 
you can only register one kernel in each cling instance.

■ Solution

■ Make the function names __cuda_module_ctor and __cuda_module_dtor unique.
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Class references:
UnqiueCUDACtorDtorName



Detail Problem: Embedding the Fatbin Generator

■ Problem 

■ The LLVM IR code of the device compiler pipeline is translated into Nvidia PTX code (a kind of 
assembler) and embedded in a fatbinary file (struct with meta data and ptx code).

■ Compared to the PTX code, the fatbin struct is not officially specified. Only Nvidia’s external 
fatbin tool is available for embedding PTX code in the fatbin struct.

■ Solution

■ Reimplementation of the fatbin tool based on a header file from the CUDA SDK in “llvm-
project-cxxjit”

■ Thanks to Hal Finkel
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Class references:
cling::IncrementalCUDADeviceCompiler
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