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Phase Ordering of Compiler Optimizations L
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e Find optimal sequence of optimization passes to improve code performance
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Why is it Important?

e One optimization sequence does not guarantee improvement for all programs

e Different permutations of an optimization sequence may yield different performances.



Trade-off: Code Size vs. Execution Time
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Phase Ordering for Code Size and Execution Time oo oo

Problem with single objective

e Optimizing only for code size may adversely affect execution time
o can ignore passes: unrolling, inlining

e Optimizing only for execution time may adversely affect code size
o can aggressively unroll or inline

Dual objective
e (Co-optimize code size and execution time



O3 vs. Oz: Comparison of runtime and code size
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O3 vs. Oz: Comparison of runtime and code size
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POSET-RL - Overview e

e Reinforcement Learning model

o Predicts the optimal sequences of passes for a given program

o Optimizes program for both size and execution time

e Builds from the embeddings given by IR2Vec framework

o Represents program as a higher dimensional vectors

o Encodes program features, flow information and semantics

S. VenkataKeerthy, Rohit Aggarwal, Shalini Jain, Maunendra Sankar Desarkar, Ramakrishna Upadrasta, and Y. N. Srikant.
IR2VEC: LLVM IR Based Scalable Program Embeddings. ACM TACO. 2020.
https://compilers.cse.iith.ac.in/projects/ir2vec/
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POSET-RL - Overview Temnas

e Predictions: sub-sequences of optimization passes

o Derive sub-sequences manually from Oz
o Generate sub-sequences from Oz Dependence Graph (ODG)

m ODG: Graph formed from -Oz pass sequence

e Architecture neutral approach

o Results on X86 and AArch architectures



Reinforcement Learning
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e Basic blocks of Reinforcement Learning models

o Environment
State

Agent

Action
Reward

o O O O

L]

Indian stmme of Tectnnloay Bvderadad



Why is Phase ordering an RL problem?
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m" combinations are possible
if repetitions are allowed

e ForOz
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o No. of transformation passes = 90

o No. of unique transformation passes = 54
o 54% =10 combinations are possible

Optimization Sequence

Reinforcement
Learning

S/

Infeasible to create a dataset with
these many combinations
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Proposed Workflow/Methodology
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Environment and State ||Il|
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e Agent interacts with environment and produces new state
e |IR2Vec Embeddings acts as a state

e Two different approaches for action space

o Manual Selection of Subsequences

o Subsequence generation by Oz Dependence Graph (ODG)
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Sub-sequences Generated by Manual Grouping e

e Sub-sequences created from LLVM'’s Oz sequence

o Manually created 15 sub-sequences
e Group the passes according to their functionality

o Loop passes, global optimizations separated into their own sub-sequence
e Not easy to tune sub-sequences manually

o Requires knowledge of each pass
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Manual Sub-sequence

-ee-instrument -simplifycfg -sroa -early-cse -lower-expect -forceattrs -inferattrs -memZ2reg

-ipsccp -called-value-propagation -attributor -globalopt

-deadargelim -instcombine -simplifycfg

-prune-eh -inline -functionattrs -barrier

-sroa -early-cse-memssa -speculative-execution -jump-threading -correlated-propagation
-simplifycfg -instcombine -tailcallelim -simplifycfg -reassociate

-loop-simplify -lcssa -loop-rotate -licm -loop-unswitch -simplifycfg -instcombine

-loop-simplify -Icssa -indvars -loop-idiom -loop-deletion -loop-unroll

-mldst-motion -gvn -memcpyopt -sccp -bdce -instcombine -jump-threading -correlated-propagation -dse
-loop-simplify -Icssa -licm -adce -simplifycfg -instcombine

-barrier -elim-avail-extern -rpo-functionattrs -globalopt -globaldce -float2int -lower-constant-intrinsics
-loop-simplify -Icssa -loop-rotate -loop-distribute -loop-vectorize

-loop-simplify -loop-load-elim -instcombine -simplifycfg -instcombine

-loop-simplify -Icssa -loop-unroll -instcombine -loop-simplify -Icssa -licm -alignment-from-assumptions

-strip-dead-prototypes -globaldce -constmerge -loop-simplify -Icssa -loop-sink -instsimplify -div-rem-pairs -simplifycfg
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ODG: Oz Dependence Graph e

e Constructed from Oz pass sequence

o Each individual optimization pass => Node of the graph

o If pass A precedes pass B in Oz sequence, then Add edge: A-> B
e Critical node: node with degree >=k (k = 8)

e Subsequence: walk that starts and ends at a critical node
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Sub-sequences generated by Oz Dependence Graph (ODG) e
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Sub-sequences generated by Oz Dependence Graph (ODG) e
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Significance of ODG sub-sequences e

e Designing sub-sequences manually may not include all possible orders
e Uncovers new sub-sequences not present in Oz
e Preserves ordering of passes in Oz

e In total, 34 sub-sequences are generated with 3 critical nodes
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Reward Computation
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Training

Inference
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[Intel Xeon E5-2690 and Intel Gold 5122

Parameters:
e Learning rate: 10
e #time steps per iteration: 1005
e 16 hours to train

X86 architecture
e Intel Xeon E5-2697

p
Dataset:

e 130 files from single source

benchmarks from LLVM-Test-Suite

7

G

Double Deep Q-Network (DDQN) Algorithm

~N

AArch architecture
e Cross compiling LLVM to target
Cortex-A72 processor

J

Results:
e SPEC-CPU-2017
e SPEC-CPU-2006
e MiBench
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Results: Percentage Code-Size Reduction e
Percentage of min, avg and max size reduction with manual and ODG sequences wrt Oz
x86 AArch64
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Results: Percentage Execution-Time Improvement

Percentage of improvement in execution time with
manual and ODG sequences wrt Oz for X86

B Manual Subquences ™ ODG Subsequences
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Results: Binary Size for SPEC e
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Results: Execution Time for SPEC e
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Summary

e ARL based framework to solve Phase Ordering problem
o Improves both code size and execution time

e Model action space by two approaches

o Manual sub-sequences
o ODG sub-sequences

e Rewards: static measure of codesize and runtime
e Results on X86 and AArch

e ODG can be extended to O3 (execution time)
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To appear in ISPASS 2022
https://compilers.cse.iith.ac.in/projects/posetrl/
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Thank You
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