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Phase Ordering of Compiler Optimizations 
● Find optimal sequence of optimization passes to improve code performance

Why is it Important?

● One optimization sequence does not guarantee improvement for all programs

● Different permutations of an optimization sequence may yield different performances.
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Designed to provide more code size reduction
May increase execution time

No optimizations

Improve performance by reducing execution time
May increase code size

Execution time nearly equal to O2
Reduces code size

Trade-off: Code Size vs. Execution Time

Trade-off between O3 
and Oz in terms of 
execution time and code 
size
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Phase Ordering for Code Size and Execution Time

Problem with single objective
● Optimizing only for code size may adversely affect execution time

○ can ignore passes: unrolling, inlining 

● Optimizing only for execution time may adversely affect code size
○ can aggressively unroll or inline

Dual objective 
● Co-optimize code size and execution time
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O3 vs. Oz: Comparison of runtime and code size
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O3 vs. Oz: Comparison of runtime and code size
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POSET-RL - Overview

● Reinforcement Learning model
○ Predicts the optimal sequences of passes for a given program

○ Optimizes program for both size and execution time 

● Builds from the embeddings given by IR2Vec framework
○ Represents program as a higher dimensional vectors

○ Encodes program features, flow information and semantics
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POSET-RL - Overview

● Predictions: sub-sequences of optimization passes 
○ Derive sub-sequences manually from Oz

○ Generate sub-sequences from Oz Dependence Graph (ODG)

■ ODG: Graph formed from -Oz pass sequence

● Architecture neutral approach
○ Results on X86 and AArch architectures
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Reinforcement Learning

● Basic blocks of Reinforcement Learning models
○ Environment
○ State
○ Agent
○ Action
○ Reward
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Why is Phase ordering an RL problem?

● For Oz
○ No. of transformation passes = 90
○ No. of unique transformation passes = 54
○ 5490 ≈10156 combinations are possible
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mn combinations are possible 
if repetitions are allowed

Reinforcement 
Learning

Infeasible to create a dataset with 
these many combinations



Proposed Workflow/Methodology
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Environment and State 

● Agent interacts with environment and produces new state

● IR2Vec Embeddings acts as a state

● Two different approaches for action space
○ Manual Selection of Subsequences

○ Subsequence generation by Oz Dependence Graph (ODG)
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Sub-sequences Generated by Manual Grouping

● Sub-sequences created from LLVM’s Oz sequence 
○ Manually created 15 sub-sequences

● Group the passes according to their functionality
○ Loop passes, global optimizations separated into their own sub-sequence

● Not easy to tune sub-sequences manually
○ Requires knowledge of each pass

13



S. No. Manual Sub-sequence

1 -ee-instrument -simplifycfg -sroa -early-cse -lower-expect -forceattrs -inferattrs -mem2reg

2 -ipsccp -called-value-propagation -attributor -globalopt

3 -deadargelim -instcombine -simplifycfg

4 -prune-eh -inline -functionattrs -barrier

5 -sroa -early-cse-memssa -speculative-execution -jump-threading -correlated-propagation

6 -simplifycfg -instcombine -tailcallelim -simplifycfg -reassociate

7 -loop-simplify -lcssa -loop-rotate -licm -loop-unswitch -simplifycfg -instcombine

8 -loop-simplify -lcssa -indvars -loop-idiom -loop-deletion -loop-unroll

9 -mldst-motion -gvn -memcpyopt -sccp -bdce -instcombine -jump-threading -correlated-propagation -dse

10 -loop-simplify -lcssa -licm -adce -simplifycfg -instcombine

11 -barrier -elim-avail-extern -rpo-functionattrs -globalopt -globaldce -float2int -lower-constant-intrinsics

12 -loop-simplify -lcssa -loop-rotate -loop-distribute -loop-vectorize

13 -loop-simplify -loop-load-elim -instcombine -simplifycfg -instcombine

14 -loop-simplify -lcssa -loop-unroll -instcombine -loop-simplify -lcssa -licm -alignment-from-assumptions

15 -strip-dead-prototypes -globaldce -constmerge -loop-simplify -lcssa -loop-sink -instsimplify -div-rem-pairs -simplifycfg 14



ODG: Oz Dependence Graph

● Constructed from Oz pass sequence
○ Each individual optimization pass => Node of the graph

○ If pass A precedes pass B in Oz sequence, then Add edge: A -> B

● Critical node: node with degree >= k (k = 8)

● Subsequence: walk that starts and ends at a critical node
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Oz Dependence Graph (ODG)
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Sub-sequences generated by Oz Dependence Graph (ODG)
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Sub-sequences generated by Oz Dependence Graph (ODG)

18



Significance of ODG sub-sequences

● Designing sub-sequences manually may not include all possible orders

● Uncovers new sub-sequences not present in Oz

● Preserves ordering of passes in Oz

● In total, 34 sub-sequences are generated with 3 critical nodes

19



Reward Computation

R = α * RBinSize + β * RThroughput

α = 10 β = 5

Reward for 
binary size

Throughput 
of the binary

Reward for Binary Size

BinSizelast - BinSizecurr

BinSizebase

RBinSize =

Reward for Execution Time

Throughputcurr - Throughputlast

Throughputbase

RThroughput =

static measure 
of runtime

Computed by 
LLVM-MCA
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Training
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Intel Xeon E5-2690 and Intel Gold 5122

Parameters: 
● Learning rate: 10-4

● #time steps per iteration: 1005
● 16 hours to train

Dataset:
● 130 files from single source

benchmarks from LLVM-Test-Suite

Double Deep Q-Network (DDQN) Algorithm

X86 architecture
● Intel Xeon E5-2697

Inference

AArch architecture
● Cross compiling LLVM to target 

Cortex-A72 processor

Results:
● SPEC-CPU-2017
● SPEC-CPU-2006
● MiBench



Results: Percentage Code-Size Reduction
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Percentage of min, avg and max size reduction with manual and ODG sequences wrt Oz
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Results: Percentage Execution-Time Improvement
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Percentage of improvement in execution time with 
manual and ODG sequences wrt Oz for X86

% Execution time 
Improvement



Results: Binary Size for SPEC 
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Results: Execution Time for SPEC
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Summary

● A RL based framework to solve Phase Ordering problem
○ Improves both code size and execution time

● Model action space by two approaches
○ Manual sub-sequences
○ ODG sub-sequences

● Rewards: static measure of codesize and runtime

● Results on X86 and AArch

● ODG can be extended to O3 (execution time)
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Thank You
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