POSET-RL: Phase ordering for Optimizing Size and
Execution Time using Reinforcement Learning

Shalini Jain, Yashas Andaluri, S. VenkataKeerthy, Ramakrishna Upadrasta

Scalable Compilers for Heterogeneous Architectures Lab
Indian Institute of Technology Hyderabad

https://compilers.cse.iith.ac.in/

LLVM-CGO 2022
Apr 03, 2022

https://compilers.cse.iith.ac.in/

®
Phase Ordering of Compiler Optimizations L

Indian stmme of Tectnnloay Bvderadad

e Find optimal sequence of optimization passes to improve code performance

...... Pass-n-1 Pass-n

e

...... _‘ | Pass-n-1

e R e N ey =

Why is it Important?

e One optimization sequence does not guarantee improvement for all programs

e Different permutations of an optimization sequence may yield different performances.

Trade-off: Code Size vs. Execution Time

00

01, 02, O3

Os

Oz

No optimizations

Improve performance by reducing execution time
May increase code size

Trade-off between O3
and Oz in terms of

execution time and code
size

Phase Ordering for Code Size and Execution Time oo oo

Problem with single objective

e Optimizing only for code size may adversely affect execution time
o can ignore passes: unrolling, inlining

e Optimizing only for execution time may adversely affect code size
o can aggressively unroll or inline

Dual objective
e (Co-optimize code size and execution time

O3 vs. Oz: Comparison of runtime and code size

1800
1600
1400
1200
1000
800
600
400
200

&

s (7 time (s)

03 time (s)

i AR svam Sroae
Indias instre of Technaloay vderanad

O3 vs. Oz: Comparison of runtime and code size

1800
1600

1400

O 1200

o«

o 1000
800

600

400

200

O size (KB)

O3 size (KB)

e 7 time (s)

e (3 time (s)

25000

20000

15000

10000

5000

wediz Aefrd dvam Sroa
Indias instre of Technaloay vderanad

POSET-RL - Overview e

e Reinforcement Learning model

o Predicts the optimal sequences of passes for a given program

o Optimizes program for both size and execution time

e Builds from the embeddings given by IR2Vec framework

o Represents program as a higher dimensional vectors

o Encodes program features, flow information and semantics

S. VenkataKeerthy, Rohit Aggarwal, Shalini Jain, Maunendra Sankar Desarkar, Ramakrishna Upadrasta, and Y. N. Srikant.
IR2VEC: LLVM IR Based Scalable Program Embeddings. ACM TACO. 2020.
https://compilers.cse.iith.ac.in/projects/ir2vec/

https://compilers.cse.iith.ac.in/projects/ir2vec/

POSET-RL - Overview Temnas

e Predictions: sub-sequences of optimization passes

o Derive sub-sequences manually from Oz
o Generate sub-sequences from Oz Dependence Graph (ODG)

m ODG: Graph formed from -Oz pass sequence

e Architecture neutral approach

o Results on X86 and AArch architectures

Reinforcement Learning

RL Agent w
state reward action
st Rt At

LE “Rit4+1— 2 J
I ; Environment
| €St+1—

e Basic blocks of Reinforcement Learning models

o Environment
State

Agent

Action
Reward

o O O O

L]

Indian stmme of Tectnnloay Bvderadad

Why is Phase ordering an RL problem?

Pass-1

N————
)

Pass-2

R ———
CIE—

Pass-3

| S —

Pass-m

n

e A svar Sroa
Indian insimme of Technaloay Evderanad

m" combinations are possible
if repetitions are allowed

e ForOz

gl

O .1 2
) -

o No. of transformation passes = 90

o No. of unique transformation passes = 54
o 54% =10 combinations are possible

Optimization Sequence

Reinforcement
Learning

S/

Infeasible to create a dataset with
these many combinations

10

<

Proposed Workflow/Methodology

RL Agent

Reward

Size LLVM-MC,
Counter Throughput

A

R

Q000 - o
oooo o
0000 - o
oooo o

IR2Vec Embeddings

=~

Input Generation

IR2Vec
Engine

Environment

L]

Indian stmme of Tectnnloay Bvderadad

11

&
Environment and State ||Il|

Indian stmme of Tectnnloay Bvderadad

e Agent interacts with environment and produces new state
e |IR2Vec Embeddings acts as a state

e Two different approaches for action space

o Manual Selection of Subsequences

o Subsequence generation by Oz Dependence Graph (ODG)

12

L]

Sub-sequences Generated by Manual Grouping e

e Sub-sequences created from LLVM'’s Oz sequence

o Manually created 15 sub-sequences
e Group the passes according to their functionality

o Loop passes, global optimizations separated into their own sub-sequence
e Not easy to tune sub-sequences manually

o Requires knowledge of each pass

13

S. No.

10
11
12
13
14

15

Manual Sub-sequence

-ee-instrument -simplifycfg -sroa -early-cse -lower-expect -forceattrs -inferattrs -memZ2reg

-ipsccp -called-value-propagation -attributor -globalopt

-deadargelim -instcombine -simplifycfg

-prune-eh -inline -functionattrs -barrier

-sroa -early-cse-memssa -speculative-execution -jump-threading -correlated-propagation
-simplifycfg -instcombine -tailcallelim -simplifycfg -reassociate

-loop-simplify -lcssa -loop-rotate -licm -loop-unswitch -simplifycfg -instcombine

-loop-simplify -Icssa -indvars -loop-idiom -loop-deletion -loop-unroll

-mldst-motion -gvn -memcpyopt -sccp -bdce -instcombine -jump-threading -correlated-propagation -dse
-loop-simplify -Icssa -licm -adce -simplifycfg -instcombine

-barrier -elim-avail-extern -rpo-functionattrs -globalopt -globaldce -float2int -lower-constant-intrinsics
-loop-simplify -Icssa -loop-rotate -loop-distribute -loop-vectorize

-loop-simplify -loop-load-elim -instcombine -simplifycfg -instcombine

-loop-simplify -Icssa -loop-unroll -instcombine -loop-simplify -Icssa -licm -alignment-from-assumptions

-strip-dead-prototypes -globaldce -constmerge -loop-simplify -Icssa -loop-sink -instsimplify -div-rem-pairs -simplifycfg

wedie A svar fevae
Indias iestmame of Technaloay Evderasad

14

ODG: Oz Dependence Graph e

e Constructed from Oz pass sequence

o Each individual optimization pass => Node of the graph

o If pass A precedes pass B in Oz sequence, then Add edge: A-> B
e Critical node: node with degree >=k (k = 8)

e Subsequence: walk that starts and ends at a critical node

15

&
Oz Dependence Graph (ODG) .,I.I.!!!.I..

Indar nstmeme of Tectnadaay Fvderadad
called-value-propagation
Chna>

G
nstrumen
jump-threading

correlated-propagation

reassociate

simplifycty ~ €—

tailcallelim

—

A 7 = loop-simplity D

loop-load-elim <

s
m « loop-distribute
@ prosen/ees loop-sink

alignment-from-
assumptions

div-rem-pairs 16

Sub-sequences generated by Oz Dependence Graph (ODG) e

reassociate

alignment-from-
assumptions

div-rem-pairs 17

Sub-sequences generated by Oz Dependence Graph (ODG) e

@ @ called-value-propagation

&5
jump-threading

correlated-propagation

simplifycfg <
tailcallelim - » reassociate
rpo-functionattrs globalopt @

E x lower-constant-
elim-avail-extern lobald LSS
globaidce intrinsics
constmerge

deadargelim

loop-simplify

/

ﬂ Cindvars 5
strip-dead-
prototypes
alignment-from-
assumptions

loop-load-elim
loop-unroll

loop-deletion

memcpyopt

Cloop-sink
Cnstsimplity >

div-rem-pairs

<>

18

(]

Significance of ODG sub-sequences e

e Designing sub-sequences manually may not include all possible orders
e Uncovers new sub-sequences not present in Oz
e Preserves ordering of passes in Oz

e In total, 34 sub-sequences are generated with 3 critical nodes

19

Reward Computation

Indian stmme of Tectnnloay Bvderadad

(Reward for

R =

a*

R

binary size

+ *
BinSize B RThroughput

Throughput W
of the binary

static measure
of runtime
Computed by

Reward for Binary Size

1
La=10

LLVM-MCA

Reward for Execution Time

BinSize

BinSizeIast - BinSize

curr

BinSize

base

Throughput_ - Throughput,__,

I:aThroughput -~

Throughput

base

20

Training

Inference

Indiar nesimete of Techaloay Evderadad

[Intel Xeon E5-2690 and Intel Gold 5122

Parameters:
e Learning rate: 10
e #time steps per iteration: 1005
e 16 hours to train

X86 architecture
e Intel Xeon E5-2697

p
Dataset:

e 130 files from single source

benchmarks from LLVM-Test-Suite

7

G

Double Deep Q-Network (DDQN) Algorithm

~N

AArch architecture
e Cross compiling LLVM to target
Cortex-A72 processor

J

Results:
e SPEC-CPU-2017
e SPEC-CPU-2006
e MiBench

21

Results: Percentage Code-Size Reduction e
Percentage of min, avg and max size reduction with manual and ODG sequences wrt Oz
x86 AArch64
® Manual B ODG B Manual mODG

10 10
8 8
6 6
%Size 4 %Size 4
Reduction 2 Reduction 2

. - ° -
-2 -2
-4 -4
-6 -6
-8 -8
10 10

SPEC2017 SPEC2006 MiBench SPEC2017 SPEC2006 MiBench

22

Results: Percentage Execution-Time Improvement

Percentage of improvement in execution time with
manual and ODG sequences wrt Oz for X86

B Manual Subquences ™ ODG Subsequences

SPEC-2017 SPEC-2006 MiBench

15
13
11

% Execution time
Improvement

W - oRoWw U N

Indian stmme of Tectnnloay Bvderadad

23

Results: Binary Size for SPEC e

20.0
17.5 A
25 4
15.0 1
20 - e
6(\\‘9‘“; 125 A
‘\\5\1’?’ 15 - a ®% 10.0
R :
I
7.5 1
10 -
5.0 1
0.5 -
25 1
0.0 - 00 -
g.““\ \ee\ ‘5\ g ((‘e‘ (\1.\)“\ o ,01,\91' \CQQ
o> > (,.“«\ Q@ NG 4 g:,%-"
b

24

Results: Execution Time for SPEC e

800

700

600 1

<&

Q\\)(\ \‘)\500 4
400 A

300 -

N Oz = 0DG

1800

s Oz mmm ODG
1600 A

1400 -
«\d\ 1200 A
&

1000 A

800 A

600 -

SRR @ N ot @ @ 0
o g S c,\,xﬂ"’“«ao ‘ﬁu St °°°@ Pl

25

Summary

e ARL based framework to solve Phase Ordering problem
o Improves both code size and execution time

e Model action space by two approaches

o Manual sub-sequences
o ODG sub-sequences

e Rewards: static measure of codesize and runtime
e Results on X86 and AArch

e ODG can be extended to O3 (execution time)

Indiar nesimete of Techaloay Evderadad

To appear in ISPASS 2022
https://compilers.cse.iith.ac.in/projects/posetrl/

26

https://compilers.cse.iith.ac.in/projects/posetrl/

Thank You

27

