What does it take to make LLVM as
performant as GCC!?

James Molloy
ARM
Ana Pazos

Yin Ma
Qualcomm Innovation Center, Inc.

. ARM

Agenda

A W N -

Background
Problems fixed
Current performance (vs GCC)

Current work

= |Induction variable selection
= Addressing mode selection
= Vectorizer

= Inliner
Future work
Conclusions

ARM

Background

anuary ‘13 March Ma ul September November
J y y y p

(o) ° ° ° ° ° ° ° ° ° ° °

February April June August October December

= January 2013 :AArché4 backend initial upstreaming

3 ARM

Background

January ‘I3 March May July September November

(o] (o) (o) (o) (o) (o) ° ° ° ° ° °

February April June August October December

= January 2013 :AArché4 backend initial upstreaming
= February 2013 - June 2013 : conformance checking and fixes

4 ARM

Background

January ‘I3 March May July September November January ‘14

o [[o o o o o (o) (o) (o) o o

February April June August October December

= January 2013 :AArché4 backend initial upstreaming
= February 2013 - June 2013 : conformance checking and fixes
= July 2013 - January 2014 : Implementation of NEON SIMD instructions

5 ARM

Methodology

January ‘14 March May July September November

(o] (o) ° ° ° ° ° ° ° ° ° °

February April June August October December

First target: SPEC2000 + SPEC2006 (INT+FP)
GCC had at least half a year (multiple man-years) of tuning

Start with a differential analysis

= Caveats:
= Fast-math mode — best FP performance
No FORTRAN benchmarks — no FORTRAN frontend or libraries available

Initially comparison versus GCC 4.8,4.9
Later, rolling comparison, trunk vs. trunk

Analysis done on Cortex-A53 and Cortex-A57, highlight results on Cortex-A57 results

ARM

January March May July September November

() (o) ° ° ° ° ° ° ° ° ° °

February April June August October December

T, X % .
N c,"’Q N Platform ARM Juno @ I.1GHz \Q’bg:'\'
LLVM Flags -03 -ffast-math -mcpu=cortex-a57 LLVM revision Trunk r202557

ooy GCC Flags -03 -ffast-math -mcpu=cortex-a57 GCC revision FSF Trunk r210918 ARM
%uIC -ftree-vectorize

ARMé64

January March May July September November

(o) (o] (o) (o) (o) ° ° ° ° ° ° °

February April June August October December

r205090 | tnorthover | 2014-03-29 10:18:08 +0000 (Sat, 29 Mar 2014)
ARM64: initial backend import

This adds a second implementation of the AArch64 architecture to LLVM,
accessible in parallel via the "armé64" triple. The plan over the
coming weeks & months is to merge the two into a single backend,
during which time thorough code review should naturally occur.

Everything will be easier with the target in-tree though, hence this
commit.

January March May July September November

o o [o o o o o o . . .

February April June August October December

LLVM Flags -03 -ffast-math -mcpu=cortex-a57 LLVM revision Trunk r209577

oy GCC Flags -03 -ffast-math -mcpu=cortex-a57 GCC revision FSF Trunk r210918 ARM
%U'C -ftree-vectorize

Problems fixed

= Upped maximum interleave factor from 2x to 4x
= Teach unroller that inner loops are riskier to unroll

= Swapped order of the SLP and Loop vectorizers

= Don’t let SLP mess up a loop for the Loop vectorizer!
* Implement fsub reductions in Loop vectorizer
= Improved floating point reassociation

= Enabled reassociation in fast-math mode

= Reduced sign/zero extension and truncation operations.

= Fixes in different areas (Legalize, IndVarSimp, etc.) improved CSE effectiveness.
= Added machine schedule models for Cortex-A53 and Cortex-A57 and tuned the models
* Wrote a pass to statically schedule FMADD/FMUL instructions — Cortex- A57 specific

= And more!

. ARM

January March May July September November

o o o o o o o o o o . .

February April June August October December

140%

130%

120%
1 10%

100%

90%
80%
70%
60% -

LLVM Flags -03 -ffast-math -mcpu=cortex-a57 LLVM revision Trunk r218131

oy GCC Flags -03 -ffast-math -mcpu=cortex-a57 GCC revision FSF Trunk r215403 ARM
%U'C -ftree-vectorize

Induction variable selection

void test fun(int *b, int **c) { test fun:

int i; mov X8, Xzr

for (1 = 0; i < 100; i++) .LBBO_1:

c[i] = &b[i]; str X0, [x1, x8] str x0, [x1], x8
} add X8, x8, #8
add X0, x0, #4

= Poor choice of induction variable cmp x8, #800
= add cannot be folded into str b.ne .LBBO_1

Applicable to POWER (stux) too

ret

Patch in progress

; ARM

Addressing mode selection

struct s { int x, y, z; }; if.then:
%Y getelementptr %struct.s* %b, i64 %idxprom, i32 1

%2 = load i32* %y
%add = add nsw 132 %2, %a.011

int f(struct s *b, int *c) {

int a = 9, d; br Label %if.end
while (d = *c++) {
if (d > 5) if.end:

a += b[d].y; %a.1 = phi 132 [%add, %if.then], [%a.011, %while.body]

%z = getelementptr %struct.s* %b, i64 %idxprom, i32 2
a += bld].z; %3 = load i32* %z, align 4
} %add3 = add nsw i32 %3, %a.1
return a; %4 = load i32* %incdec.ptri2
} %bool = icmp eq i32 %4, ©

br i1 %bool, Llabel %while.end.loopexit, Llabel %while.body

MMMMMMMM
NNNNNNNNNN
Q EEEEEE , INC.

Addressing mode selection

struct s { int x, vy, z; };

int f(struct s *b, int *c) {
int a = 9, d;
while (d = *c++) {
if (d > 5)
a += b[d].y;
a += b[d].z;
}

return a;

}
= Patch submitted (by Hao Liu)

.LBBO 2:
ldrsh
cmp
b.1t

madd
ldr
add
.LBBO 4:
madd
ldr
add
add
cbnz

x11, [x9]
x11, #6
.LBBO 4

x12, x11, x10, x0
wl2, [x12, #4]
w8, wl2, w8

x12, x11, x10, x©
wl2, [x12, #8]
w8, wl2, w8

X9, X9, #4

wll, .LBBO 2

ARM

Vectorization

¥ Vectorized

® No information

% Not beneficial to vectorize

& Cannot identify array bounds

& Could not determine number of loop iterations
B Unsafe dependent memory operations in loop
“ Cannot check memory dependencies at runtime
“ Value used outside loop

~ Control flow cannot be substituted for select

= Comparison versus GCC 4.9 for AArché4

: ARM

Inlining

= GCC versus LLVM performance analysis reveals the LLVM inliner
= Does not inline certain hot functions unless a high threshold is provided at —O3.
= Produces larger and slower code at —Os.

= |dentified use cases that should be considered in the inlining strategy.

= About the LLVM inliner

= Traverses call graph in SCC order (i.e., bottom-up order).
= Supports a deferred bottom-up inlining mode.
= Cannot be modified to achieve a desired order of processing call sites due to its pass setup.

. ARM

Inlining: Primary Use Case

= Use Case |:A calls B calls C

A() { // Use Case 1
call B(pl, p2, p3, p4, PS5, po)
}

B(pl, p2, p3, p4, pS, po6)
call C ()

}

A bottom-up inliner always tries to inline C into B first.
But if C is inlined into B, B may be too big to be inlined into A.
= There are cases it is more profitable to inline B into A.

= LLVM inliner’s solution: deferred bottom up inlining mode.
= Desired behavior: Allow the inliner to decide which call site will be processed first.

; ARM

Inlining: Other Use Cases

= Use Case 2

= Desired behavior: Favor inlining call sites in
loops.

= Use Case 3

= Desired behavior: Favor inlining call sites at
root level which are more likely to be in
the critical path.

MMMMMMMM
NNNNNNNNNN
CCCCCCCCCCC

A() { // Use Case 2
call B ()

call C()
call D ()
for (..) {
call F ()
}
}

A() { // Use Case 3
call B ()
call C()
call D ()
if (..)
if (..)
call F ()

ARM

Inlining: Greedy Inliner Approach

A module pass that builds upon the LLVM inliner and uses a different call site processing
order.

= LLVM inliner does the local decision and actual inlining work.
= LLVM inliner special tunings are preserved.

= Uses a priority queue of call sites with computed weights.
= The weight is computed based on size, use count, loop depth, branch level etc.

Threshold for a call site can be further tuned with bonus policy to catch use cases.

= Patch with initial tuning for ARMv7 target up-streamed for code review and feedback.
Experiments on AArché64 on going and indicate heuristics need tuning.

= Discussion to be continued at this year’s BOF on “LLVM Inliner Improvements”.

. ARM

Inlining: Greedy Inliner Inheritance and Collaboratlon Diagrams

——

llvm::ModulePass

T

llvm::Inliner

CallSite PreferredCS
int BonusThreshold
SmallVector<...> InlinedCalls

llvm::GreedylnlinerPass

void setPreferredCallSite(CallSite CS)
void setBonusThreshold(int Bonus)
SmallVector<...> &getlnlinedCalls()

1

llvm::GreedylnlinerHelper

InlineCostAnalysis *ICA

bool runOnSCC(CallGraphSCC &SCC)
InlineCost getlnlineCost(CallSite CS)

llvm::GreedylnlinerHelper

2

llvm::InlineCostAnalysis

{

llvm::GreedylnlinerPass

i Collaboration

Greedy Inliner Speedup (-O3) on ARMv/

Ining

Inl

110

108

106

104

102

100

98

96

94

92

dwwegg|
xa|dos oSy
2239/ |
diz8p9|
wnauenbql'z9y
quqliad-gst
des'yq7

1eE/ |
Ayyead-9g|
Aeanod gGy
Wqo Gyt
223 €01
Jureey
Jwqgoueex €8y
youaqiad-ooy
PWety
pwg|
Jawwy 9G4
pWweuyid,
tdizq’|of
»enbagg
adag/ |

PHIUYY
7dizq997
wqrosy
A4 4
ddysuwor |/}
JeISE' S/
Jasaed /g |
BsoWr// |
uo97ZSt
X91I0A'GGT
gxuydszgy
JIIOMI00€
uals'ggy

Nexus 4 device

-03 -ffast-math -mcpu

Platform

cortex-a57

LLVM baseline Flags

LLVM Flags

internal branch E RM

LLVM revision

cortex-a57
=true

21

-mllvm -greedy-inliner

-03 -ffast-math -mcpu

CENTER, INC.

QUALCOMM
INNOVATION

Q

Greedy Inliner Size Increase (-O3) on ARMv/

Ining

Inl

60

Size increase % in the sum of text segments in object files

50

40

20

10

Ayead'9g|
youaqjad-oop
Jwqdueex €8y
PWety
wqrosy

tdizq | of
PWg|
X31J40A'GGT
exulyds'zgy
Wqod i
ded67

e T4 4
pweuyyy
Jrureet

223°€0p
Jasaed /g |

Nexus 4 device
cortex-a57
cortex-a57

-03 -ffast-math -mcpu

wnuenbql'z9y
BsawW// |
Buals'ggy
ddysuwor| /¢
adagy|
quiqguad-gsg
JIOMI00E

2239/ |
oenbagg]

-03 -ffast-math -mcpu

uoa'7sT
diz349|
1dizq'95T
Aeanod g6y
dwwegg|

By 99y
xa|dos oSy

LLVM baseline Flags

Platform
LLVM Flags

JRISE' €/
He6/|
A4 4

LLVM revision internal branch

-mllvm -greedy-inliner=true
22

CENTER, INC.

QUALCOMM
INNOVATION

Q

Inlining: Greedy Inliner Speedup (-O3) on AArché64

108 . . T . o .
After adjusting heuristics to improve compilation time

106

104

102

100

98

96

94

92

90

88

86
X c o = £ U o L X o X & % >0 X X OoT- £ s W U s X o o s S L v =
ES 8BS E S SELEREE YRS EERESENEE LR ESEL b3
T EZR w25 W OO0 IOy 00EE QR TEYR BOY ES= 933
gMNG —m g SE e 5 Qg0 > 2FdT 0B g -0 ch®9FN
T =R YoF 2RATRF2TRNIeT LT nE 3 8 3
Ln <= < X — 90 S S «© < =L =

¥ 0 00 F
5 ~

Platform Qualcomm cortex-a57 core
LLVM baseline Flags -03 -ffast-math -mcpu=cortex-a57
LLVM Flags -03 -ffast-math -mcpu=cortex-a57

CEN:‘SKIJ;\ZETTO:% _mllvm —gl"eedy-inlinel"=tl"ue LLVM I"eViSion Trunk I"2|8|3| RM
quC 23 A

Inlining: Greedy Inliner Size Increase (-O3) on AArché4

2
After adjusting heuristics to improve compilation time
Size increase % in the sum of text segments in object files

1= (0] v = >N - X |9} b0 A T X 4= M (O (o N =1 c o ¥ O ©c o = < ~
97:,&,7“%88Egog'ﬁge.eg85=§&°§oex§og.eosaklt
. 3 . v = > w q S .= b0 P < N o T o e -) 1S - Q = o~ . o N 2 £ O & o .=
M TP U o 0 ® T @ 24 ¢ € £ 8 00 0mo c £ —ac SR I S L & £ &8 g 0 <c
N 9 R NRKR am g @ © o S t — 2 d 60m & g £ 0 P - T oo oN & 5 € o 3
& < wn Y 4 s a ¥ ¥ v < < Q 2 @© a N m — o = g o in
'5 N ~ < N~ o [a2) <
) < - 0]
<+ <
Platform Qualcomm cortex-a57 core
LLVM baseline Flags -03 -ffast-math -mcpu=cortex-a57
LLVM Flags -03 -ffast-math -mcpu=cortex-a57

LLVM revision Trunk r218131

auncomt -mllvm -greedy-inliner=true RM
Quic y A

Future Work

= BOF discussion on LLVM inliner to set goals and how to achieve them.

= Detected some issues that can be resolved with alias analysis improvements.
= Remove redundant load, e.g. PR20074.

= Hoist/sink loads/stores out of loops, e.g., PR20585 and PR21229.
= Will LLVM’s strict aliasing rules allow aggressive optimizations like in GCC?

= Continue performance analysis
= Enabling other optimizations for high performance, e.g., LTO, PGO.
= Diversifying workload.

* How to raise geomean even higher? Thoughts! Come see us!

; ARM

Conclusions

= Example of productive cooperation among ARM, QuliC, Apple, LLVM and Clang
community.

= Performance is very important for LLVM AArché64 compiler to be competitive.

= Acknowledgments
ARM Ltd.: Jiangning Liu, Hao Liu, Kevin Qin.

QuIC Inc.: Dave Estes,Yin Ma, Balaram Makam, Chad Rosier, Sanjin Sijaric, Weiming Zhao, Zhaoshi
Zheng.

Apple: Tim Northover, Andy Trick

= LLVM and Clang community reviewers.

9 ARM

Back-up Slides

. ARM

January March May July September November

o o [o o o o o o . . .

February April June August October December

110

105

100

95

90

85

80
&

) S R & R & & &
L LS e Q““p '.v@@ A’ v&b‘% Qe Q“’(e \’\c’AQ b"“g & \’\o'? b*’AV\Q o
'{;)Q & '\(?6,- VoS & \q'\' N ~? Vv
Platform Qualcomm cortex-a53 core
LLVM Flags -03 -ffast-math -mcpu=cortex-a57 LLVM revision Trunk r209577

auaLcount GCC Flags -03 -ffast-math -mcpu=cortex-a57 GCC revision 4.9
CENTER, NG -ftree-vectorize ARM
EUlC

Q

March May July

April June August
120

100

80

60

40

20

0
&

5 & <
i@ @) O\ er Q Q

\Q) (;‘)Q N r{:’(‘) q)Q \Cb \o"\ ° \
Platform Qualcomm cortex-a53 core

LLVM Flags -03 -ffast-math -mcpu=cortex-a57

GCC Flags -03 -ffast-math -mcpu=cortex-a57
-ftree-vectorize

LLVM revision Trunk r218131

GCC revision

ARM

Problems fixed

= Removed a single redundant load...
= PRLE resolves the issue but it is slow; Improve GVN? Down our priority list!

= Reduced spilling from Q registers

= 128-bit Q registers are not callee-saved and this cost needs to be taken into account in
optimizations.

* Loop unroller

= Use a loop to simplify the runtime unrolling prologue.

* Improved rematerialization
= |dentified arithmetic and logical instructions that are as cheap as move instructions on AArché4.

DAG transformations to allow more efficient machine idioms to be generated.

= Generate TBZ, TBNZ, CMN, CINC, UBFX; lower SDIV by power of 2 using ADD+SELECT+SHIFT;
convert MUL by (power of 2 +-1) to SHIFT+ADD/SUB.

] ARM

Problems fixed

= Disabled conditional select instruction generation for predicted branches on A57.
= Ml scheduler: enabled Post-RA and enable/improved AA during machine scheduling

= Machine model for A57 details

= Modeled instruction latency, micro-op details, forwarding for MAC instructions and hazards for
SQRT/DIV instructions.

= Experimented with how to model the compiler look-ahead capability

Issue width reduced to 3 so that the scheduler can better accommodate the narrower decode and dispatch
width.

3. ARM

Inlining: Greedy Inliner Main Algorithm

for each function in Module
CallSites += collectFunctionCallSites()

computeCallSitesWeight(CallSites)

FuncInliner = createGreedyInlinerHelperPass()

do
CS = getBestCallSite(CallSites)
BonusThreshold = ComputeBonusThreshold(CS)

setBonusThreshold(FuncInliner, BonusThreshold)
setPreferredCallSite(FuncInliner, CS)
Change = run(FuncInliner)

if no Change continue

CallSites += getInlinedCalls(FuncInliner)
computeCallSitesWeight(CallSites)
while CallSites not empty

" ARM

Inlining: Greedy Inliner Call Site Weight Computation

B - Benefit Point if inlining (larger is better, 0 is no special benefit)
= Catch Special Need

L - Loop depth of this call site (larger is better)

S - Size of the callee (smaller is better)
= Based on instruction count and basic block count

U - Use Bonus Factor; initialized to |
= Call site with one or two uses get some bonus.

BL - Branch Level

= Call site in branch will have lower priority in a function.
= C — How many calls to this callee.
= S — Scale up to make threshold works better
= Weight =B*L*U*S/(C*SQRT(S) * BL)

. ARM

Performance Analysis Details

= ~]00 issues found in several compiler areas.

CodeGen
9

Scalar (target agnostic)
31

Scalar (target specific)
23

y ARM

Performance Analysis Details

Hlssues

Alias Analysis Code Layout CSE/SCEV Dead Code Induction Variable Inlining Ld/St Address Loop Peephole Register Scheduler Vectorizer
Optimization Optimization Optlmlzatlon Elimination Optimization Calculation Optimization Allocation, Spill/

Reload

©

o

N

N

o

QUALCOMM
INNOVATION
w CENTER, INC.

Methodology

January ‘14 March May July September November
(o] (o) ° ° ° ° ° ° ° ° ° °

February April June August October December

= Benchmarks as a proxy for performance

= Standard set of benchmarks
= SPEC2000, SPEC2006
= EEMBC
= Geekbench
= Dhrystone

= Coremark

= First target: SPEC (INT+FP)

y ARM

Current work

Geomean speedup

| 1.5% ... Progress so far!
0.4% Addressing modes
0.6% Induction variables
P77 Vectorization
| 2.0% Inlining

. ARM

Addressing mode selection

= Complex addressing mode calculation
= Represented as GEPs
= Calculation not split up before [Sel

= Patch submitted (by Hao Liu)

38

.LBBO 2:
ldrsh
cmp
b.1t

madd
ldr
add
.LBBO 4:
madd
ldr
add
add
cbnz

x11, [x9]
x11, #6
.LBBO 4

x12, x11, x10, x0
wl2, [x12, #4]
w8, wl2, w8

x12, x12, x10, x0
wl2, [x12, #8]
w8, wl2, w8

X9, X9, #4

wll, .LBBO 2

0.4%

ARM

