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Motivation

I Finding best application parameters is a costly iterative
process

C E R E

I Codelet Extractor and REplayer
I Break an application into standalone codelets
I Make costly analysis affordable:

I Focus on single regions instead of whole applications
I Run a single representative by clustering similar codelets
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Codelet Extraction

I Extract codelets as standalone microbenchmarks

C or Fortran application

for (i = 0; i < N; i ++) {
    for (j = 0; j < N; j ++) {
       a[i][j] += b[i]*c[j];
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}

.

.

.

.

.

.

for (i = 0; i < N; i ++) {
    for (j = 0; j < N; j ++) {
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}
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CERE Workflow
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CERE can extract codelets from:

I Hot Loops

I OpenMP non-nested parallel regions [Popov et al. 2015]
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Capturing codelets at Intermediate Representation

I Faithful: behaves similarly to the original region

I Retargetable: modify runtime and compilation parameters

same assembly 6= assembly [Akel et al. 2013]
hard to retarget (compiler, ISA) easy to retarget
costly support various ISA costly support various languages

I LLVM Intermediate Representation is a good tradeoff
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Faithful capture

I Required for semantically accurate replay:
I Register state
I Memory state
I OS state: locks, file descriptors, sockets

I No support for OS state except for locks. CERE captures fully
from userland: no kernel modules required.

I Required for performance accurate replay:
I Preserve code generation
I Cache state
I NUMA ownership
I Other warmup state (eg. branch predictor)
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Faithful capture: memory

Capture access at page granularity: coarse but fast

region
to capture

protect static and currently allocated
process memory (/proc/self/maps)

intercept memory allocation functions
with LD_PRELOAD

1 allocate memory 

2 protect memory and return
to user program

segmentation
fault handler

1 dump accessed memory to disk

2 unlock accessed page and return 
to user program

a[i]++;

memory
access

a = malloc(256);

memory
allocation

I Small dump footprint: only touched pages are saved
I Warmup cache: replay trace of most recently touched pages
I NUMA: detect first touch of each page
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Selecting Representative Codelets

I Key Idea: Applications have redundancies
I Same codelet called multiple times
I Codelets sharing similar performance signatures

I Detect redundancies and keep only one representative
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Figure : SPEC tonto make ft@shell2.F90:1133 execution trace. 90%
of NAS codelets can be reduced to four or less representatives.
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Performance Signature Clustering

Maqao

Likwid

Static & Dynamic
Profiling Vectorization ratio

FLOPS/s
Cache Misses
...[ ] Clustering

f1
f2
f3
...

Step A: Perform static and dynamic analysis on a reference 
architecture to capture codelet's feature vectors.

BT

SP

Step B: Using the proximity between feature 
vectors we cluster similar codelets and select one 
representative per cluster.

Step C: CERE extracts the 
representatives as standalone 
codelets. A model extrapolates full 
benchmark results. 

Model

Sandy Bridge

Atom

Core2

Full
Benchmarks

Results

[Oliveira Castro et al. 2014]
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Codelet Based Architecture Selection

0.12 0.15

0.83 0.83

1.55 1.59

0.0

0.5

1.0

1.5

Atom Core 2 Sandy Bridge

G
eo

m
et

ric
m

ea
n 

sp
ee

du
p

Real Speedup

Predicted Speedup

Re
fe

re
nc

e:
 N

eh
al

em

Figure : Benchmarking NAS serial on three architectures

I real: speedup when benchmarking original applications
I predicted: speedup predicted with representative codelets
I CERE 31× cheaper than running the full benchmarks.
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Autotuning LLVM middle-end optimizations

I LLVM middle-end offers more than 50 optimization passes.
I Codelet replay enable per-region fast optimization tuning.

Id of LLVM middle−end optimization passes combination
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Figure : NAS SP ysolve codelet. 1000 schedules of random passes
combinations explored based on O3 passes.

CERE 149× cheaper than running the full benchmark
( 27× cheaper when tuning codelets covering 75% of SP) 12 / 16



Fast Scalability Benchmarking with OpenMP Codelets
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Figure : Varying thread number at replay in SP and average results over
OMP NAS [Popov et al. 2015]
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Conclusion

I CERE breaks an application into faithful and retargetable
codelets

I Piece-wise autotuning:
I Different architecture
I Compiler optimizations
I Scalability
I Other exploration costly analysis ?

I Limitations:
I No support for codelets performing IO (OS state not captured)
I Cannot explore source-level optimizations
I Tied to LLVM

I Full accuracy reports on NAS and SPEC’06 FP available at
benchmark-subsetting.github.io/cere/#Reports
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benchmark-subsetting.github.io/cere/##Reports


Thanks for your attention!

C E R E

https://benchmark-subsetting.github.io/cere/

distributed under the LGPLv3
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Retargetable replay: register state

I Issue: Register state is non-portable between architectures.

I Solution: capture at a function call boundary
I No shared state through registers except function arguments
I Get arguments directly through portable IR code

I Register agnostic capture

I Portable across Atom, Core 2, Haswell, Ivybridge, Nehalem,
Sandybridge

I Preliminar portability tests between x86 and ARM 32 bits
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Retargetable replay: outlining regions

Step 1: Outline the region to capture using CodeExtractor pass

original:

%0 = load i32* %i, align 4

%1 = load i32* %s.addr, align 4

%cmp = icmp slt i32 %0, %1

br i1 %cmp, ; loop branch here

label %for.body,

label %for.exitStub ...

define internal void @outlined(

i32* %i, i32* %s.addr,

i32** %a.addr) {

call void @start_capture(i32* %i,

i32* %s.addr, i32** %a.addr)

%0 = load i32* %i, align 4

...

ret void

}

original:

call void @outlined(i32* %i,

i32* %s.addr, i32** %a.addr)

Step 2: Call start capture just after the function call
Step 3: At replay, reinlining and variable cloning [Liao et al. 2010]
steps ensure that the compilation context is close to original
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Comparison to other Code Isolating tools

CERE
Code
Isolator

Astex Codelet
Finder

SimPoint

Support
Language C(++),

Fortran, ...
Fortran C, Fortran C(++),

Fortran
assembly

Extraction IR source source source assembly
Indirections yes no no yes yes

Replay
Simulator yes yes yes yes yes
Hardware yes yes yes yes no

Reduction
Capture size reduced reduced reduced full -

Instances yes manual manual manual yes
Code sign. yes no no no yes
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Accuracy Summary: NAS SER

Core2 Haswell
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Figure : The Coverage the percentage of the execution time captured by
codelets. The Accurate Replay is the percentage of execution time
replayed with an error less than 15%.
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Accuracy Summary: SPEC FP 2006
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Figure : The Coverage is the percentage of the execution time captured
by codelets. The Accurate Replay is the percentage of execution time
replayed with an error less than 15%.

I low coverage (sphinx3, wrf, povray): < 2000 cycles or IO

I low matching (soplex, calculix, gamess): warmup “bugs”
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CERE page capture dump size
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Figure : Comparison between the page capture and full dump size on
NAS.A benchmarks. CERE page granularity dump only contains the
pages accessed by a codelet. Therefore it is much smaller than a full
memory dump.
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CERE page capture overhead

CERE page capture is coarser but faster

CERE ATOM 3.25 PIN 1.71 Dyninst 4.0

cg.a 19.4 98.82 222.67 896.86
ft.a 24.1 44.22 127.64 1054.70
lu.a 62.4 80.72 153.46 301.4
mg.a 8.9 107.69 168.61 989.53
sp.a 73.2 67.56 93.04 203.66

Slowdown of a full capture run against the original application run.
(takes into account the cost of writing the memory dumps and logs
to disk and of tracing the page accesses during the whole
execution.). We compare to the overhead of memory tracing tools
as reported by [Gao et al. 2005].
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CERE cache warmup

for (i=0; i < size; i++) 
     a[i] += b[i];

... ...

array a[] pages array b[] pages

21 22 23 50 51 52...

 pages addresses

21 5051 20

46 17 47 18 48 19 49

22

...

Reprotect 20

memory

{ {
FIFO 
(most recently unprotected)

warmup page trace
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Test architectures

Atom Core 2 Nehalem Sandy Bridge Ivy Bridge Haswell

CPU D510 E7500 L5609 E31240 i7-3770 i7-4770
Frequency (GHz) 1.66 2.93 1.86 3.30 3.40 3.40
Cores 2 2 4 4 4 4
L1 cache (KB) 2×56 2×64 4×64 4×64 4×64 4×64
L2 cache (KB) 2×512 3 MB 4×256 4×256 4×256 4×256
L3 cache (MB) - - 12 8 8 8
Ram (GB) 4 4 8 6 16 16

32 bits portability test: ARM1176JZF-S on a Raspberry Pi Model B+
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Clustering NR Codelets

cut for K = 14

Codelet
toeplz_1
rstrct_29
mprove_8
toeplz_4
realft_4
toeplz_3
svbksb_3

lop_13
toeplz_2
four1_2
tridag_2
tridag_1

ludcmp_4
hqr_15

relax2_26
svdcmp_14
svdcmp_13

hqr_13
hqr_12_sq
jacobi_5
hqr_12

svdcmp_11
elmhes_11
mprove_9

matadd_16
svdcmp_6
elmhes_10
balanc_3

Computation Pattern
DP: 2 simultaneous reductions

DP: MG Laplacian fine to coarse mesh transition
MP: Dense Matrix x vector product

DP: Vector multiply in asc./desc. order
DP: FFT butterfly computation
DP: 3 simultaneous reductions

SP: Dense Matrix x vector product
DP: Laplacian finite difference constant coefficients
DP: Vector multiply element wise in asc./desc. order

MP: First step FFT
DP: First order recurrence
DP: First order recurrence

SP: Dot product over lower half square matrix
SP: Addition on the diagonal elements of a matrix

DP: Red Black Sweeps Laplacian operator
DP: Vector divide element wise

DP: Norm + Vector divide
DP: Sum of the absolute values of a matrix column

SP: Sum of a square matrix
SP: Sum of the upper half of a square matrix
SP: Sum of the lower half of a square matrix

DP: Multiplying a matrix row by a scalar
DP: Linear combination of matrix rows
DP: Substracting a vector with a vector

DP: Sum of two square matrices element wise
DP: Sum of the absolute values of a matrix row

DP: Linear combination of matrix columns
DP: Vector multiply element wise
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Clustering NR Codelets

cut for K = 14

Codelet
toeplz_1
rstrct_29
mprove_8
toeplz_4
realft_4
toeplz_3
svbksb_3

lop_13
toeplz_2
four1_2
tridag_2
tridag_1

ludcmp_4
hqr_15

relax2_26
svdcmp_14
svdcmp_13

hqr_13
hqr_12_sq
jacobi_5
hqr_12

svdcmp_11
elmhes_11
mprove_9

matadd_16
svdcmp_6
elmhes_10
balanc_3

Computation Pattern

DP: Vector divide element wise
DP: Norm + Vector divide

DP: Sum of the absolute values of a matrix column
SP: Sum of a square matrix

SP: Sum of the upper half of a square matrix
SP: Sum of the lower half of a square matrix

Reduction
Sums

Long Latency
Operations

Similar computation patterns
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Capturing Architecture Change

LU/erhs.f : 49

FT/appft.f : 45

BT/rhs.f : 266

SP/rhs.f : 275

Cluster A: triple-nested
high latency operations
(div and exp)

Cluster B: stencil on five
planes (memory bound)
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Same Cluster = Same Speedup

LU/erhs.f : 49

FT/appft.f : 45

BT/rhs.f : 266

SP/rhs.f : 275

Cluster A: triple-nested
high latency operations
(div and exp)

Cluster B: stencil on five
planes (memory bound)
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→ 2.93 GHz
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Feature Selection

I Genetic Algorithm: train on Numerical Recipes + Atom +
Sandy Bridge

I Validated on NAS + Core 2
I The feature set is still among the best on NAS
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Reduction Factor Breakdown

Reduction Total Reduced invocations Clustering

Atom 44.3 ×12 ×3.7
Core 2 24.7 ×8.7 ×2.8

Sandy Bridge 22.5 ×6.3 ×3.6

Table : Benchmarking reduction factor breakdown with 18
representatives.
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Profiling Features

SP

codelets

Likwid

Maqao

Performance counters per codelet

Static dissassembly and analysis

4 dynamic features

8 static features

Bytes Stored / cycle
Stalls
Estimated IPC
Number of DIV
Number of SD
Pressure in P1
Ratio ADD+SUB/MUL
Vectorization (FP/FP+INT/INT)

FLOPS
L2 Bandwidth
L3 Miss Rate
Mem Bandwidth
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Clang OpenMP front-end

void main()
{
  #pragma omp parallel   
  {    
    int p = omp_get_thread_num();
    printf("%d",p);
  }
}

C code

Clang OpenMP
front end

define i32 @main() {
entry:
...
call @__kmpc_fork_call @.omp_microtask.(...)
...
}

define internal void @.omp_microtask.(...) {
entry:
    %p = alloca i32, align 4
    %call = call i32 @omp_get_thread_num()
    store i32 %call, i32* %p, align 4
    %1 = load i32* %p, align 4
    call @printf(%1)
}

LLVM simplified IR Thread execution model
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