
CERE: LLVM based Codelet Extractor and
REplayer for Piecewise Benchmarking and

Optimization

Chadi Akel, P. de Oliveira Castro, M. Popov, E. Petit, W. Jalby

University of Versailles – Exascale Computing Research

EuroLLVM 2016

C E R E

Motivation

I Finding best application parameters is a costly iterative
process

C E R E

I Codelet Extractor and REplayer
I Break an application into standalone codelets
I Make costly analysis affordable:

I Focus on single regions instead of whole applications
I Run a single representative by clustering similar codelets

1 / 16

Codelet Extraction

I Extract codelets as standalone microbenchmarks

C or Fortran application

for (i = 0; i < N; i ++) {
 for (j = 0; j < N; j ++) {
 a[i][j] += b[i]*c[j];
 }
}

.

.

.

.

.

.

for (i = 0; i < N; i ++) {
 for (j = 0; j < N; j ++) {
 a[i][j] += b[i]*c[j];
 }
}

codelet wrapper

capture machine state state dump

codelets can be recompiled
and run independently

R
e
g

io
n

+
IR

2 / 16

CERE Workflow

Applications
LLVM IR Region

outlining

Region
Capture

Fast
performance

prediction

Retarget for:
 different architecture
 different optimizations

Change: number of threads, affinity,
runtime parameters

Warmup
+

Replay

Working set
and cache

capture

Generate
codelets
wrapper

Working sets
memory dump

Codelet
Replay

Invocation
&

Codelet
subsetting

CERE can extract codelets from:

I Hot Loops

I OpenMP non-nested parallel regions [Popov et al. 2015]

3 / 16

Outline

Extracting and Replaying Codelets
Faithful
Retargetable

Applications
Architecture selection
Compiler flags tuning
Scalability prediction

Demo
Capture and replay in NAS BT
Simple flag replay for NAS FT

Conclusion

4 / 16

Capturing codelets at Intermediate Representation

I Faithful: behaves similarly to the original region

I Retargetable: modify runtime and compilation parameters

same assembly 6= assembly [Akel et al. 2013]
hard to retarget (compiler, ISA) easy to retarget
costly support various ISA costly support various languages

I LLVM Intermediate Representation is a good tradeoff

5 / 16

Faithful capture

I Required for semantically accurate replay:
I Register state
I Memory state
I OS state: locks, file descriptors, sockets

I No support for OS state except for locks. CERE captures fully
from userland: no kernel modules required.

I Required for performance accurate replay:
I Preserve code generation
I Cache state
I NUMA ownership
I Other warmup state (eg. branch predictor)

6 / 16

Faithful capture: memory

Capture access at page granularity: coarse but fast

region
to capture

protect static and currently allocated
process memory (/proc/self/maps)

intercept memory allocation functions
with LD_PRELOAD

1 allocate memory

2 protect memory and return
to user program

segmentation
fault handler

1 dump accessed memory to disk

2 unlock accessed page and return
to user program

a[i]++;

memory
access

a = malloc(256);

memory
allocation

I Small dump footprint: only touched pages are saved
I Warmup cache: replay trace of most recently touched pages
I NUMA: detect first touch of each page

7 / 16

Outline

Extracting and Replaying Codelets
Faithful
Retargetable

Applications
Architecture selection
Compiler flags tuning
Scalability prediction

Demo
Capture and replay in NAS BT
Simple flag replay for NAS FT

Conclusion

8 / 16

Selecting Representative Codelets

I Key Idea: Applications have redundancies
I Same codelet called multiple times
I Codelets sharing similar performance signatures

I Detect redundancies and keep only one representative

0e+00

2e+07

4e+07

6e+07

8e+07

0 1000 2000 3000
invocation

C
yc

le
s

replay

Figure : SPEC tonto make ft@shell2.F90:1133 execution trace. 90%
of NAS codelets can be reduced to four or less representatives.

9 / 16

Performance Signature Clustering

Maqao

Likwid

Static & Dynamic
Profiling Vectorization ratio

FLOPS/s
Cache Misses
...[] Clustering

f1
f2
f3
...

Step A: Perform static and dynamic analysis on a reference
architecture to capture codelet's feature vectors.

BT

SP

Step B: Using the proximity between feature
vectors we cluster similar codelets and select one
representative per cluster.

Step C: CERE extracts the
representatives as standalone
codelets. A model extrapolates full
benchmark results.

Model

Sandy Bridge

Atom

Core2

Full
Benchmarks

Results

[Oliveira Castro et al. 2014]

10 / 16

Codelet Based Architecture Selection

0.12 0.15

0.83 0.83

1.55 1.59

0.0

0.5

1.0

1.5

Atom Core 2 Sandy Bridge

G
eo

m
et

ric
m

ea
n

sp
ee

du
p

Real Speedup

Predicted Speedup

Re
fe

re
nc

e:
 N

eh
al

em

Figure : Benchmarking NAS serial on three architectures

I real: speedup when benchmarking original applications
I predicted: speedup predicted with representative codelets
I CERE 31× cheaper than running the full benchmarks.

11 / 16

Autotuning LLVM middle-end optimizations

I LLVM middle-end offers more than 50 optimization passes.
I Codelet replay enable per-region fast optimization tuning.

Id of LLVM middle−end optimization passes combination

C
yc

le
s

(I
vy

br
id

ge
 3

.4
G

H
z)

6.0e+07

8.0e+07

1.0e+08

1.2e+08

0 200 400 600

original
replay
O3

Figure : NAS SP ysolve codelet. 1000 schedules of random passes
combinations explored based on O3 passes.

CERE 149× cheaper than running the full benchmark
(27× cheaper when tuning codelets covering 75% of SP) 12 / 16

Fast Scalability Benchmarking with OpenMP Codelets

1 2 4 8 16 32
Threads

0

1

2

3

4

5

6

R
u
n
ti

m
e
 c

y
cl

e
s

1e8 SP compute rhs on Sandy Bridge

Real
Predicted

Core2 Nehalem Sandy Bridge Ivy Bridge

Accuracy 98.2% 97.1% 92.6% 97.2%
Acceleration × 25.2 × 27.4 × 23.7 × 23.7

Figure : Varying thread number at replay in SP and average results over
OMP NAS [Popov et al. 2015]

13 / 16

Outline

Extracting and Replaying Codelets
Faithful
Retargetable

Applications
Architecture selection
Compiler flags tuning
Scalability prediction

Demo
Capture and replay in NAS BT
Simple flag replay for NAS FT

Conclusion

14 / 16

Conclusion

I CERE breaks an application into faithful and retargetable
codelets

I Piece-wise autotuning:
I Different architecture
I Compiler optimizations
I Scalability
I Other exploration costly analysis ?

I Limitations:
I No support for codelets performing IO (OS state not captured)
I Cannot explore source-level optimizations
I Tied to LLVM

I Full accuracy reports on NAS and SPEC’06 FP available at
benchmark-subsetting.github.io/cere/#Reports

15 / 16

benchmark-subsetting.github.io/cere/##Reports

Thanks for your attention!

C E R E

https://benchmark-subsetting.github.io/cere/

distributed under the LGPLv3

16 / 16

https://benchmark-subsetting.github.io/cere/

Bibliography I

Akel, Chadi et al. (2013). “Is Source-code Isolation Viable for Performance
Characterization?” In: 42nd International Conference on Parallel Processing
Workshops. IEEE.

Gao, Xiaofeng et al. (2005). “Reducing overheads for acquiring dynamic
memory traces”. In: Workload Characterization Symposium, 2005.
Proceedings of the IEEE International. IEEE, pp. 46–55.

Liao, Chunhua et al. (2010). “Effective source-to-source outlining to support
whole program empirical optimization”. In: Languages and Compilers for
Parallel Computing. Springer, pp. 308–322.

Oliveira Castro, Pablo de et al. (2014). “Fine-grained Benchmark Subsetting
for System Selection”. In: Proceedings of Annual IEEE/ACM International
Symposium on Code Generation and Optimization. ACM, p. 132.

Popov, Mihail et al. (2015). “PCERE: Fine-grained Parallel Benchmark
Decomposition for Scalability Prediction”. In: Proceedings of the 29th IEEE
International Parallel and Distributed Processing Symposium IPDPS. IEEE.

17 / 16

Retargetable replay: register state

I Issue: Register state is non-portable between architectures.

I Solution: capture at a function call boundary
I No shared state through registers except function arguments
I Get arguments directly through portable IR code

I Register agnostic capture

I Portable across Atom, Core 2, Haswell, Ivybridge, Nehalem,
Sandybridge

I Preliminar portability tests between x86 and ARM 32 bits

18 / 16

Retargetable replay: outlining regions

Step 1: Outline the region to capture using CodeExtractor pass

original:

%0 = load i32* %i, align 4

%1 = load i32* %s.addr, align 4

%cmp = icmp slt i32 %0, %1

br i1 %cmp, ; loop branch here

label %for.body,

label %for.exitStub ...

define internal void @outlined(

i32* %i, i32* %s.addr,

i32** %a.addr) {

call void @start_capture(i32* %i,

i32* %s.addr, i32** %a.addr)

%0 = load i32* %i, align 4

...

ret void

}

original:

call void @outlined(i32* %i,

i32* %s.addr, i32** %a.addr)

Step 2: Call start capture just after the function call
Step 3: At replay, reinlining and variable cloning [Liao et al. 2010]
steps ensure that the compilation context is close to original

19 / 16

Comparison to other Code Isolating tools

CERE
Code
Isolator

Astex Codelet
Finder

SimPoint

Support
Language C(++),

Fortran, ...
Fortran C, Fortran C(++),

Fortran
assembly

Extraction IR source source source assembly
Indirections yes no no yes yes

Replay
Simulator yes yes yes yes yes
Hardware yes yes yes yes no

Reduction
Capture size reduced reduced reduced full -

Instances yes manual manual manual yes
Code sign. yes no no no yes

20 / 16

Accuracy Summary: NAS SER

Core2 Haswell

0

25

50

75

100

N
AS.A

lu cg mg sp ft bt is ep lu cg mg sp ft bt is ep

%
 o

f E
xe

c.
 T

im
e

accurate replay codelet coverage

Figure : The Coverage the percentage of the execution time captured by
codelets. The Accurate Replay is the percentage of execution time
replayed with an error less than 15%.

21 / 16

Accuracy Summary: SPEC FP 2006

Haswell

0

25

50

75

100
SPEC

FP06

ga
mes

s

sp
hin

x3
de

alI
I

wrf

po
vra

y

ca
lcu

lix
so

ple
x

les
lie3

d
ton

to

gro
mac

s

ze
us

mp
lbm milc

ca
ctu

sA
DM

na
md

bw
ave

s

ge
msfd

td

sp
ec

ran
d

%
 o

f E
xe

c.
 T

im
e

Figure : The Coverage is the percentage of the execution time captured
by codelets. The Accurate Replay is the percentage of execution time
replayed with an error less than 15%.

I low coverage (sphinx3, wrf, povray): < 2000 cycles or IO

I low matching (soplex, calculix, gamess): warmup “bugs”

22 / 16

CERE page capture dump size

94

27

106

26
51

1

367

117
131

46

89

8

472

101 96

22

0

50

100

150

200

bt cg ep ft is lu mg sp

Si
ze

 (M
B)

full dump (Codelet Finder) page granularity dump (CERE)

Figure : Comparison between the page capture and full dump size on
NAS.A benchmarks. CERE page granularity dump only contains the
pages accessed by a codelet. Therefore it is much smaller than a full
memory dump.

23 / 16

CERE page capture overhead

CERE page capture is coarser but faster

CERE ATOM 3.25 PIN 1.71 Dyninst 4.0

cg.a 19.4 98.82 222.67 896.86
ft.a 24.1 44.22 127.64 1054.70
lu.a 62.4 80.72 153.46 301.4
mg.a 8.9 107.69 168.61 989.53
sp.a 73.2 67.56 93.04 203.66

Slowdown of a full capture run against the original application run.
(takes into account the cost of writing the memory dumps and logs
to disk and of tracing the page accesses during the whole
execution.). We compare to the overhead of memory tracing tools
as reported by [Gao et al. 2005].

24 / 16

CERE cache warmup

for (i=0; i < size; i++)
 a[i] += b[i];

... ...

array a[] pages array b[] pages

21 22 23 50 51 52...

 pages addresses

21 5051 20

46 17 47 18 48 19 49

22

...

Reprotect 20

memory

{ {
FIFO
(most recently unprotected)

warmup page trace

25 / 16

Test architectures

Atom Core 2 Nehalem Sandy Bridge Ivy Bridge Haswell

CPU D510 E7500 L5609 E31240 i7-3770 i7-4770
Frequency (GHz) 1.66 2.93 1.86 3.30 3.40 3.40
Cores 2 2 4 4 4 4
L1 cache (KB) 2×56 2×64 4×64 4×64 4×64 4×64
L2 cache (KB) 2×512 3 MB 4×256 4×256 4×256 4×256
L3 cache (MB) - - 12 8 8 8
Ram (GB) 4 4 8 6 16 16

32 bits portability test: ARM1176JZF-S on a Raspberry Pi Model B+

26 / 16

Clustering NR Codelets

cut for K = 14

Codelet
toeplz_1
rstrct_29
mprove_8
toeplz_4
realft_4
toeplz_3
svbksb_3

lop_13
toeplz_2
four1_2
tridag_2
tridag_1

ludcmp_4
hqr_15

relax2_26
svdcmp_14
svdcmp_13

hqr_13
hqr_12_sq
jacobi_5
hqr_12

svdcmp_11
elmhes_11
mprove_9

matadd_16
svdcmp_6
elmhes_10
balanc_3

Computation Pattern
DP: 2 simultaneous reductions

DP: MG Laplacian fine to coarse mesh transition
MP: Dense Matrix x vector product

DP: Vector multiply in asc./desc. order
DP: FFT butterfly computation
DP: 3 simultaneous reductions

SP: Dense Matrix x vector product
DP: Laplacian finite difference constant coefficients
DP: Vector multiply element wise in asc./desc. order

MP: First step FFT
DP: First order recurrence
DP: First order recurrence

SP: Dot product over lower half square matrix
SP: Addition on the diagonal elements of a matrix

DP: Red Black Sweeps Laplacian operator
DP: Vector divide element wise

DP: Norm + Vector divide
DP: Sum of the absolute values of a matrix column

SP: Sum of a square matrix
SP: Sum of the upper half of a square matrix
SP: Sum of the lower half of a square matrix

DP: Multiplying a matrix row by a scalar
DP: Linear combination of matrix rows
DP: Substracting a vector with a vector

DP: Sum of two square matrices element wise
DP: Sum of the absolute values of a matrix row

DP: Linear combination of matrix columns
DP: Vector multiply element wise

27 / 16

Clustering NR Codelets

cut for K = 14

Codelet
toeplz_1
rstrct_29
mprove_8
toeplz_4
realft_4
toeplz_3
svbksb_3

lop_13
toeplz_2
four1_2
tridag_2
tridag_1

ludcmp_4
hqr_15

relax2_26
svdcmp_14
svdcmp_13

hqr_13
hqr_12_sq
jacobi_5
hqr_12

svdcmp_11
elmhes_11
mprove_9

matadd_16
svdcmp_6
elmhes_10
balanc_3

Computation Pattern

DP: Vector divide element wise
DP: Norm + Vector divide

DP: Sum of the absolute values of a matrix column
SP: Sum of a square matrix

SP: Sum of the upper half of a square matrix
SP: Sum of the lower half of a square matrix

Reduction
Sums

Long Latency
Operations

Similar computation patterns

27 / 16

Capturing Architecture Change

LU/erhs.f : 49

FT/appft.f : 45

BT/rhs.f : 266

SP/rhs.f : 275

Cluster A: triple-nested
high latency operations
(div and exp)

Cluster B: stencil on five
planes (memory bound)

Core 2
→ 2.93 GHz
→ 3 MB

Atom
→ 1.66 GHz
→ 1 MB

Nehalem (Ref)
Freq: 1.86 GHz
LLC: 12 MB

50

100

200

400

slower

50

100

200

400

800
1500

3000

slower

40 50 60

slower

50

100

200

400
faster

Reference Target

m
s

m
s

28 / 16

Same Cluster = Same Speedup

LU/erhs.f : 49

FT/appft.f : 45

BT/rhs.f : 266

SP/rhs.f : 275

Cluster A: triple-nested
high latency operations
(div and exp)

Cluster B: stencil on five
planes (memory bound)

Core 2
→ 2.93 GHz
→ 3 MB

Atom
→ 1.66 GHz
→ 1 MB

Nehalem (Ref)
Freq: 1.86 GHz
LLC: 12 MB

50

100

200

400

slower

50

100

200

400

800
1500

3000

slower

40 50 60

slower

50

100

200

400
faster

Reference Target

m
s

m
s

29 / 16

Feature Selection

I Genetic Algorithm: train on Numerical Recipes + Atom +
Sandy Bridge

I Validated on NAS + Core 2
I The feature set is still among the best on NAS

Atom

Core 2

Sandy Bridge

10
20
30
40
50

10
20
30
40

10
20
30
40

0 5 10 15 20 25
Number of clusters

M
ed

ia
n

%
 e

rr
or

Worst

Median

Best

GA features

30 / 16

Reduction Factor Breakdown

Reduction Total Reduced invocations Clustering

Atom 44.3 ×12 ×3.7
Core 2 24.7 ×8.7 ×2.8

Sandy Bridge 22.5 ×6.3 ×3.6

Table : Benchmarking reduction factor breakdown with 18
representatives.

31 / 16

Profiling Features

SP

codelets

Likwid

Maqao

Performance counters per codelet

Static dissassembly and analysis

4 dynamic features

8 static features

Bytes Stored / cycle
Stalls
Estimated IPC
Number of DIV
Number of SD
Pressure in P1
Ratio ADD+SUB/MUL
Vectorization (FP/FP+INT/INT)

FLOPS
L2 Bandwidth
L3 Miss Rate
Mem Bandwidth

32 / 16

Clang OpenMP front-end

void main()
{
 #pragma omp parallel
 {
 int p = omp_get_thread_num();
 printf("%d",p);
 }
}

C code

Clang OpenMP
front end

define i32 @main() {
entry:
...
call @__kmpc_fork_call @.omp_microtask.(...)
...
}

define internal void @.omp_microtask.(...) {
entry:
 %p = alloca i32, align 4
 %call = call i32 @omp_get_thread_num()
 store i32 %call, i32* %p, align 4
 %1 = load i32* %p, align 4
 call @printf(%1)
}

LLVM simplified IR Thread execution model

33 / 16

	Extracting and Replaying Codelets
	Faithful
	Retargetable

	Applications
	Architecture selection
	Compiler flags tuning
	Scalability prediction

	Demo
	Capture and replay in NAS BT
	Simple flag replay for NAS FT

	Conclusion
	Appendix

