-fbounds-safety

Enforcing bounds safety for production C code

Yeoul Na (Apple), May 11th, 2023

Agenda

Motivation

Design goals and highlights
Programming model of -fbounds-safety
Optimization

Performance impact

Memory unsafety is the leading source of security vulnerabilities

Memory unsafety is the leading source of security vulnerabilities

 Memory safety bugs account for 60-70% of software vulnerabilities

Memory unsafety is the leading source of security vulnerabilities

 Memory safety bugs account for 60-70% of software vulnerabilities

* High-profile attacks have exploited memory safety bugs leading to financial
and physical threats

Memory safety properties

 Bounds safety (or spatial safety)

* Temporal safety (or lifetime safety)
e [ype safety

* Definite initialization

* Thread safety

C does not guarantee memory safety

Bounds safety (or spatial safety)
Temporal safety (or lifetime safety)
Type safety

Definite initialization

Thread safety

Memory-safe languages provide enhanced safety guarantees

¥ Bounds safety (or spatial safety)
¥, Temporal safety (or lifetime safety)
¥ Type safety

¥ Definite initialization

¥ Thread safety

Memory-safe languages are increasingly the best choice

 Memory-safe languages have emerged as a promising option for systems
programming

* |ncreasingly available for more programming environments

* |ncredible initiatives taking place in this domain

Transitioning from C to safe languages takes time

* Billions of lines of C code remain in production
o Efforts to rewrite existing C code using safe languages (e.g., Linux kernel)
* Rewriting requires significant engineering effort and time

* Expect continued maintenance of C code for several more decades

We need a solution to rapidly harden
existing C code

Bounds unsafety is the biggest cause of dangerous vulnerabilities

2022 CWE Top 25 Most Dangerous Software Weaknesses

Rank Name
L Out-of-bounds Write
4 Improper Input Validation
5 Out-of-bounds Read
13 Integer Overflow or Wraparound
19 Improper Restriction of Operations within the Bounds of a Memory Buffer

Bounds unsafety is the biggest cause of dangerous vulnerabilities

2022 CWE Top 25 Most Dangerous Software Weaknesses

Rank Name
L Out-of-bounds Write
4 Improper Input Validation
5 Out-of-bounds Read
13 Integer Overflow or Wraparound
19 Improper Restriction of Operations within the Bounds of a Memory Buffer

Bounds unsafety is the biggest cause of dangerous vulnerabilities

2022 CWE Top 25 Most Dangerous Software Weaknesses

Rank Name
L Out-of-bounds Write
4 Improper Input Validation
5 Out-of-bounds Read
13 Integer Overflow or Wraparound
19 Improper Restriction of Operations within the Bounds of a Memory Buffer

Bounds unsafety is the biggest cause of dangerous vulnerabilities

2022 CWE Top 25 Most Dangerous Software Weaknesses

Rank Name
L Out-of-bounds Write
4 Improper Input Validation
5 Out-of-bounds Read
13 Integer Overflow or Wraparound
19 Improper Restriction of Operations within the Bounds of a Memory Buffer

-foounds-safety

C extension for bounds safety

-fbounds-safety only provides bounds safety

But it offers quicker way to make remaining C code safer

Memory safe languages

C -fbounds-safety (Swift, Rust, etc.)

Bounds safety (or spatial safety) v v
Temporal safety
Type safety

Definite initialization

J § 8§ S

Thread safety

12

Design goals and highlights

Automatically insert bounds checks as a safety net

 Programmers manually add bounds checks, but sometimes make mistakes

* -fbounds-safety automatically adds bounds checks as a safety net

fill array_with_indices(xbuf, size t count) {
(size t i = 0; i <= count; ++1i) {
bufl[i] = i;
}
I3

14

Automatically insert bounds checks as a safety net

 Programmers manually add bounds checks, but sometimes make mistakes

* -fbounds-safety automatically adds bounds checks as a safety net

fill array_with_indices(xbuf, size t count) {
(size t 1 = 0; i <= count; ++1i) {
bufl[i] = i;
}
I3

14

Automatically insert bounds checks as a safety net

 Programmers manually add bounds checks, but sometimes make mistakes

* -fbounds-safety automatically adds bounds checks as a safety net

fill array_with_indices(xbuf, size t count) {
(size t i = 0; i <= count; ++1i) {
(i <0 || i >= count) trap();
bufl[i] = i;
I3
}

14

C pointers do not have bounds information

Potential solution: Use wide pointers

Potential solution: Use wide pointers

* Analogous to struct with upper/lower bounds alongside the pointer value

typedef struct {
int xkpointer;
int skupper_bound;
int xlower_bound;
} wide_ptr;

16

Potential solution: Use wide pointers

* Analogous to struct with upper/lower bounds alongside the pointer value

e a.k.a “fat” pointers

typedef struct {
int xkpointer;
int skupper_bound;
int xlower_bound;
} wide_ptr;

16

Potential solution: Use wide pointers

* Analogous to struct with upper/lower bounds alongside the pointer value
e a.k.a “fat” pointers

* Allows compiler to automatically insert bounds check

typedef struct {
int xpointers;
int skupper_bound;
int xlower_bound;
} wide_ptr;

16

Problem: Wide pointers break Application Binary Interface (ABI)

Problem: Wide pointers break Application Binary Interface (ABI)

foo(wide_ptr p); & s s Jfoo(int *p);

your_obj.dylib

17

Problem: Wide pointers break Application Binary Interface (ABI)

* Problem interacting with external libraries

foo(wide_ptr p); & » it 4 foo(int *p);

your_obj.dylib

17

Problem: Wide pointers break Application Binary Interface (ABI)

* Problem interacting with external libraries

» Difficult to incrementally adopt the technique

foo(wide_ptr p); & » it 4 foo(int *p);

your_obj.dylib

17

Incremental adoption is crucial

* Adoption often requires significant engineering effort

 Adopting on a large project all at once is likely infeasible

18

Potential solution: Use bounds annotations

* Require programmers to provide bounds annotation on their code

¢ e.qg., void foo(int *x_ counted by(n) buf, int n);

 No need to change pointer representation
* Preserves ABI

 Enables incremental adoption

19

Potential solution: Use bounds annotations

* Require programmers to provide bounds annotation on their code

¢ e.qg., void foo(int x counted by(n) buf, int n);

 No need to change pointer representation
* Preserves ABI

 Enables incremental adoption

19

Problem: Annotation burden

* Adding annotations on every pointer requires significant programmer effort

* Prevents wide adoption in practice

20

-fbounds-safety: Mix them together!

-fbounds-safety: Mix them together!

* Wide pointers on non-ABI surface

e | owers annotation burden

-fbounds-safety: Mix them together!

* Wide pointers on non-ABI surface
* |owers annotation burden
 Bounds annotations on ABI surface
* Preserves ABI

 Enables incremental adoption

21

-fbounds-safety:

Automatic bounds checking with bounds annotations

 Programmers adopt bounds annotations on;
* Function prototypes, struct fields, globals

 Compiler adds guaranteed bounds checks

fill array_with_indices(xbuf, size t count) {
(size t 1 = 0; i <= count; ++1i) {
bufli] = 1i;
}
I3

-fbounds-safety:

Automatic bounds checking with bounds annotations

 Programmers adopt bounds annotations on;
* Function prototypes, struct fields, globals

 Compiler adds guaranteed bounds checks

fill array_with_indices(% __counted_by(count) buf, size_t count) {
(size t 1 = 0; i <= count; ++1i) {
bufl[i] = 1i;
}
I3

-fbounds-safety:

Automatic bounds checking with bounds annotations

 Programmers adopt bounds annotations on;
* Function prototypes, struct fields, globals

 Compiler adds guaranteed bounds checks

fill array_with_indices(% __counted_by(count) buf, size_t count) {
(size t 1 = 0; i <= count; ++1i) {
(i <0 || 1i>= count) trap();
bufl[i] = i;
}
I3

Compiler rejects code without sufficient bounds information

* (Guides programmers to add necessary bounds annotations

» Securing all pointers by default

23

Compiler rejects code without sufficient bounds information

* (Guides programmers to add necessary bounds annotations

» Securing all pointers by default

void fill array with_indices(int xbuf, size_t count) {
for (size t 1 = 0; i <= count; ++i) {
bufl[i] = i;
I3
}

23

Compiler rejects code without sufficient bounds information

* (Guides programmers to add necessary bounds annotations

» Securing all pointers by default

fill _array with_indices/(xbuf, size t count) {
(size t i = 0; i <= count; ++1i) {

} buflil = 1; I Array subscript on single pointer ‘buf’ must use a

constant index of O to be in bounds

}

23

Compiler rejects code without sufficient bounds information

* (Guides programmers to add necessary bounds annotations

» Securing all pointers by default

void fill array with indices(int *_counted_by(count) buf, size t count) {
for (size t 1 = 0; i <= count; ++i) {
bufl[i] = i;
I3
}

23

-fboounds-safety doesn’t require
bounds annotations all the time

Local variables are wide by default

Solution to keep bounds annotation burden low

 Compiler implicitly carries bounds for local variables
 No manual annotation is required

 No ABI implications

foo(i) 1
xbuf = (x)malloc(10);
(buf + i < buf || buf + i >= buf + 10) trap(); // automatically inserted
buf[i] = Oxff;
// more code ...

}

25

Local variables are wide by default

Solution to keep bounds annotation burden low

 Compiler implicitly carries bounds for local variables
 No manual annotation is required

 No ABI implications

foo(i) 1
xbuf = (x)malloc(10);
(buf + i < buf || buf + i >= buf + 10) trap(); // automatically inserted
buf[i] = Oxff;
// more code ...

}

25

Local variables are wide by default

Solution to keep bounds annotation burden low

 Compiler implicitly carries bounds for local variables
 No manual annotation is required

 No ABI implications

foo(i) 1
xbuf = (x)malloc(10);
(buf + i < buf || buf + i >= buf + 10) trap(); // automatically inserted
buf[i] = Oxff;
// more code ...

}

25

All pointers except locals are single by default

 Most pointers are pointing to a single object
* No need for pointer arithmetic

e No need for bounds information

 Annotation __single is default for all pointers except locals

void fill struct(struct s_t xp);

// example usage
struct s_t s;
fill struct(&s);

26

All pointers except locals are single by default

 Most pointers are pointing to a single object
* No need for pointer arithmetic

e No need for bounds information

 Annotation __single is default for all pointers except locals

void fill struct(struct s t x_single p);

// example usage
struct s_t s;
fill struct(&s);

26

All pointers except locals are single by default

 Most pointers are pointing to a single object
* No need for pointer arithmetic

e No need for bounds information

 Annotation __single is default for all pointers except locals

void fill struct(struct s_t xp);

// example usage
struct s_t s;
fill struct(&s);

26

-fbounds-safety solves challenges for safe C extensions

-fbounds-safety solves challenges for safe C extensions

* ABI compatibility v
* Incremental adoption ¥

« Adoption burden v

-fbounds-safety solves challenges for safe C extensions

* ABI compatibility v
* Incremental adoption ¥
« Adoption burden v

e Source compatibility 2

Challenge: Preserve source compatibility with C

Challenge: Preserve source compatibility with C

* Need to build with standard C compilers

Challenge: Preserve source compatibility with C

* Need to build with standard C compilers

 Need compatibility with existing static analysis and code inspection tooling

Challenge: Preserve source compatibility with C

* Need to build with standard C compilers

 Need compatibility with existing static analysis and code inspection tooling

 Should be adoptable in shared code:

28

Challenge: Preserve source compatibility with C

* Need to build with standard C compilers

 Need compatibility with existing static analysis and code inspection tooling
 Should be adoptable in shared code:

* Library headers

28

Challenge: Preserve source compatibility with C

* Need to build with standard C compilers
 Need compatibility with existing static analysis and code inspection tooling
 Should be adoptable in shared code:

* Library headers

 Open-source projects

28

Challenge: Preserve source compatibility with C

* Need to build with standard C compilers
 Need compatibility with existing static analysis and code inspection tooling
 Should be adoptable in shared code:

* Library headers

 Open-source projects

 Requirement: Must not introduce new syntax that C compilers don’t
understand

28

Bounds annotations are macro-defined C attributes

 Bounds annotations are syntactically C type attributes
* Do not introduce new syntax
 Bounds annotations are macro-defined

 When defined to empty they are still valid C

29

-fbounds-safety solves real-world challenges

* ABI compatibility v
* Incremental adoption W
* Low adoption burden ©

e Source compatibility 2

-fbounds-safety solves real-world challenges

* ABI compatibility v
* Incremental adoption W
* Low adoption burden ©

* Source compatibility &

-fbounds-safety iIs relatively easy to adopt

-fbounds-safety iIs relatively easy to adopt

* Adoption is mostly about annotations in function prototypes and struct fields

-fbounds-safety iIs relatively easy to adopt

* Adoption is mostly about annotations in function prototypes and struct fields

* Require relatively less code modification

-fbounds-safety iIs relatively easy to adopt

* Adoption is mostly about annotations in function prototypes and struct fields
* Require relatively less code modification

* Time to adopt: ~ 1 hour per 2,000 LOC (vary depending on codebase)

31

-fbounds-safety iIs relatively easy to adopt

* Adoption is mostly about annotations in function prototypes and struct fields
* Require relatively less code modification
* Time to adopt: ~ 1 hour per 2,000 LOC (vary depending on codebase)

e Currently, only supports C (Objective-C and C++ are not supported)

31

-fbounds-safety iIs relatively easy to adopt

* Adoption is mostly about annotations in function prototypes and struct fields
* Require relatively less code modification

* Time to adopt: ~ 1 hour per 2,000 LOC (vary depending on codebase)

e Currently, only supports C (Objective-C and C++ are not supported)

e Can mix and match bounds safe and unsafe code

31

-fbounds-safety iIs relatively easy to adopt

* Adoption is mostly about annotations in function prototypes and struct fields
* Require relatively less code modification

* Time to adopt: ~ 1 hour per 2,000 LOC (vary depending on codebase)

e Currently, only supports C (Objective-C and C++ are not supported)

* Can mix and match bounds safe and unsafe code

* Allows strategy of incremental adoption

31

Adoption at Apple

Adoption at Apple

 Adopted in millions of lines of production C code

Adoption at Apple

 Adopted in millions of lines of production C code

 Libraries used for:

32

Adoption at Apple

 Adopted in millions of lines of production C code
* Libraries used for:

e Secure boot and firmware

32

Adoption at Apple

 Adopted in millions of lines of production C code
* Libraries used for:
e Secure boot and firmware

o Security-critical components of XNU

32

Adoption at Apple

 Adopted in millions of lines of production C code
» Libraries used for:

* Secure boot and firmware

o Security-critical components of XNU

* Built-in image format parsers

32

Adoption at Apple

 Adopted in millions of lines of production C code
» Libraries used for:

* Secure boot and firmware

o Security-critical components of XNU

* Built-in image format parsers

 Built-in audio codecs

32

Adoption at Apple

 Adopted in millions of lines of production C code
» Libraries used for:

* Secure boot and firmware

o Security-critical components of XNU

* Built-in image format parsers

* Built-in audio codecs

 Found to be effective for real-world applications

32

Programming model

Enforcing bounds safety at language level
Bounds annotations

-fbounds-safety enforces bounds safety at language level

-fbounds-safety enforces bounds safety at language level

* Prevents out-of-bounds memory accesses via bounds checking

34

-fbounds-safety enforces bounds safety at language level

* Prevents out-of-bounds memory accesses via bounds checking

* Prevents pointer operations that cannot be proven safe (or with insufficient
bounds information)

34

-fbounds-safety enforces bounds safety at language level

* Prevents out-of-bounds memory accesses via bounds checking

* Prevents pointer operations that cannot be proven safe (or with insufficient
bounds information)

» Maintains correctness of bounds annotations

34

-fbounds-safety prevents unsafe behaviors by ...

 Compile-time warning / error when the compiler knows an operation will be
unsafe

 Run-time checks and traps when behavior cannot be proven safe/unsafe at
compile time

 Compiler uses its best effort to report errors at compile time

Bounds annotations

External bounds annotations

Describe relationship between pointer and bounds information

‘count is the element count of buf

7\

fill array_with_indices(* counted by(count) buf, size t count) {
(size t 1 = 0; i <= count; ++1i) {
bufl[i] = i;
}
I3

37

Bounds annotation: __counted_by(N)

* buf has count elements with the valid range [0, count)

« Can be indexed in a positive direction

 Can be used inside array bracket,.e.g, int arr[__counted_by(count)]

void fill array_int(int %__ counted by(count) buf, size t count);

// example usage
fill_array_int(array, 10);

70

Bounds annotation: __sized_by(N)

e buf has byte _count with the valid range [0, byte_count)

« Can be indexed in a positive direction =

void fill array_byte(void % sized by(byte_count) buf, size_t byte_count);

// example usage
fill array byte(array, 10 x sizeof(arrayl[0]));

20

Bounds annotation: __ended_by(P)

e end is the upper bound of buf with the valid range [0, end - buf)

» "buf indexed in a positive direction ®; ‘end’ in a negative direction &

void fill_array_to_end(int *__ended_by(end) buf, int xend);

// example usage
fill array_to _end(array, &array[10]);

NN

Maintaining correctness of
__counted_by

Updating pointer may invalidate bounds information

Updating pointer may invalidate bounds information

« Updating buf to point to an object of byte size 4

foo(x counted by(count) buf, size t count) {
buf = (x)malloc(4);
s

// usage
foo(buf , 10);

42

Updating pointer may invalidate bounds information

« Updating buf to point to an object of byte size 4

 The count variable is 10 so __count_by annotation becomes invalid

foo(x counted by(count) buf, size t count) {
buf = (x)malloc(4);
s

// usage
foo(buf , 10);

42

Updating pointer may invalidate bounds information

e Updating buf to point to an object of byte size 4

 The count variable is 10 so __count_by annotation becomes invalid

foo(x counted by(count) buf, size t count) {
buf = (x)malloc(4);
s

// usage
foo(buf , 10);

@ Assignment to 'int * _counted_by(count)' 'buf’
requires corresponding assignment to '‘count’

42

Updating pointer may invalidate bounds information

« Updating buf to point to an object of byte size 4

 The count variable is 10 so __count_by annotation becomes invalid

foo(x counted by(count) buf, size t count) {
buf = (x)malloc(4);
count = 4;
I3
// usage

foo(buf , 10);

42

Updating pointer may invalidate bounds information

« Updating buf to point to an object of byte size 4

 The count variable is 10 so __count_by annotation becomes invalid

foo(x counted by(count) buf, size t count) {
(4 * (int) > 4) trap();
buf = (x)malloc(4);
count = 4,;
I3
// usage

foo(buf , 10);

42

Annotation for C strings: _ null_terminated

size t my strlen(const char *x__null_terminated str);

// example usage
size t ak_len = my_strlen(“abcdefghijk”);

43

Annotation for C strings: _ null_terminated

e Indicates str has the null terminator

size t my strlen(const char *x__null_terminated str);

// example usage
size t ak_len = my_strlen(“abcdefghijk”);

43

Annotation for C strings: _ null_terminated

e Indicates str has the null terminator

* Ensures that str is not accessed beyond the null terminator

size t my strlen(const char *x__null_terminated str);

// example usage
size t ak_len = my_strlen(“abcdefghijk”);

43

__single: pointers to single object

* p is pointing to a single valid object (this is the case for most pointers)

e Can NOT be indexed in any direction ©

void fill_struct(struct s_t x_single p);
// example usage

struct s t s = {}:
fill struct(&s);

44

Help us support more use cases
with your feedback!

Internal bounds annotations

Escape hatches that allow to explicitly use wide pointers

Internal bounds annotation: bidi Indexable

void fill_array_internal_bounds(int x__bidi_indexable buf);
// example usage

int array[10] = {0};
fill array_internal_bounds(array);

N7

Internal bounds annotation: bidi Indexable

e _ bidi_indexable turns buf into a wide pointer with upper and lower bounds

void fill_array_internal_bounds(int x__bidi_indexable buf);
// example usage

int array[10] = {0};
fill array_internal_bounds(array);

N7

Internal bounds annotation: bidi Indexable

__bidi_indexable turns buf into a wide pointer with upper and lower bounds

e Can be indexed in both directions

void fill_array_internal_bounds(int x__bidi_indexable buf);
// example usage

int array[10] = {0};
fill array_internal_bounds(array);

N7

Internal bounds annotation: bidi Indexable

__bidi_indexable turns buf into a wide pointer with upper and lower bounds

« Can be indexed in both directions

 Changes the pointer representation -> breaks the ABI

void fill_array_internal_bounds(int x__bidi_indexable buf);
// example usage

int array[10] = {0};
fill array_internal_bounds(array);

N7

Internal bounds annotation: bidi Indexable

e _ bidi_indexable turns buf into a wide pointer with upper and lower bounds
» Can be indexed in both directions

 Changes the pointer representation -> breaks the ABI

A Avoid using it on the ABI surface

void fill_array_internal_bounds(int x__bidi_indexable buf);
// example usage

int array[10] = {0};
fill array_internal_bounds(array);

N7

Internal bounds annotation: Indexable

void fill_array_internal_bounds(int *__indexable buf);
// example usage

int array[10] = {0};
fill_array_internal_bounds(array);

/1 Q

Internal bounds annotation: Indexable

e buf is a wide pointer with upper bound (smaller than __bidi_indexable)

void fill_array_internal_bounds(int *__indexable buf);
// example usage

int array[10] = {0};
fill_array_internal_bounds(array);

/1 Q

Internal bounds annotation: Indexable

e buf is a wide pointer with upper bound (smaller than __bidi_indexable)

« Can be indexed in a positive direction

void fill_array_internal_bounds(int *__indexable buf);
// example usage

int array[10] = {0};
fill_array_internal_bounds(array);

/1 Q

Internal bounds annotation: Indexable

‘buf is a wide pointer with upper bound (smaller than __bidi_indexable)

» Can be indexed in a positive direction

 Changes the pointer representation -> breaks ABI

void fill_array_internal_bounds(int *__indexable buf);
// example usage

int array[10] = {0};
fill_array_internal_bounds(array);

/1 Q

Internal bounds annotation: Indexable

e buf is a wide pointer with upper bound (smaller than __bidi_indexable)
» Can be indexed in a positive direction

 Changes the pointer representation -> breaks ABI

A Avoid using it on the ABI surface

void fill_array_internal_bounds(int *__indexable buf);
// example usage

int array[10] = {0};
fill_array_internal_bounds(array);

/1 Q

Default pointer annotations

Key for ABlI compatibility & less manual annotation

* ABI visible pointers . __single by default
 Non-ABI visible pointers : _ bidi_indexable by default

 constchar” . __null_terminated by default

e Secures all pointers by default
* Preserves ABI compatibility by default

e Doesn’t need manual annotation all the time

49

Interoperability w/ bounds-unsafe code
enables iIncremental adoption

__unsafe_indexable: pointers from bounds-unsafe code

51

__unsafe_indexable: pointers from bounds-unsafe code

e Just like normal C pointers

e Can be indexed in both directions

e No checks are added

// my_system.h
volid * unsafe_indexable system_function(void * unsafe_indexable buf);

51

__unsafe_indexable: pointers from bounds-unsafe code

e Just like normal C pointers
e Can be indexed in both directions
e No checks are added

* Avoid using in bounds-safe code

// my_system.h
volid * unsafe_indexable system_function(void * unsafe_indexable buf);

51

__unsafe_indexable: pointers from bounds-unsafe code

e Just like normal C pointers
e Can be indexed in both directions
e No checks are added

* Avoid using in bounds-safe code

* Default for system headers

// my_system.h
void * unsafe_indexable system_function(void *_ unsafe_indexable buf);

51

Taking a return value from unsafe code

Taking a return value from unsafe code

 The model doesn’t allow initializing any safe pointer with an unsafe pointer

int xsafe buf = unsafe func(); // error

Taking a return value from unsafe code

 The model doesn’t allow initializing any safe pointer with an unsafe pointer

int xsafe buf = unsafe func(); // error

 Use __unsafe_forge_bidi_indexable (T,P,S) to create a __bidi_indexable pointer
from an __unsafe_indexable pointer

int xsafe_ buf =
__unsafe_forge_bidi_indexable(int %, unsafe_func(), byte_size of _buf); // ok

52

Taking a return value from unsafe code

 The model doesn’t allow initializing any safe pointer with an unsafe pointer

int xsafe buf = unsafe func(); // error

 Use __unsafe_forge_bidi_indexable (T,P,S) to create a __bidi_indexable pointer
from an __unsafe_indexable pointer

int xsafe_ buf =
__unsafe_forge_bidi_indexable(int %, unsafe_func(), byte_size of _buf); // ok

Avoid using this intrinsic for any other purposes!

52

Bounds annotation summary

ABI Compatibility Index directions Bounds checks Default for
__counted_by(N) v -> v
__sized_by(N) v > v
__ended_by(N) v > v
__null_terminated v v const char *
__single v v]Ic:iglr:jcsti/oglglgc;’i:types [struct
__indexable (2x bigger) > v
__bidi_indexable (3x bigger) o 4 Locals

__unsafe_indexable v e Pointers in system headers

=D

Bounds annotation summary

ABI Compatibility Index directions Bounds checks Default for
__counted_by(N) v -> v
__sized_by(N) v > v
__ended_by(N) v > v
__null_terminated v v const char *
__single v v]Ic:iglr:jcsti/oglglgc;’i:types [struct
__indexable (2Xx bigger) > v
__bidi_indexable (3x bigger) o 4 Locals

__unsafe_indexable v e Pointers in system headers

=D

Bounds annotation summary

ABI Compatibility Index directions Bounds checks Default for
__counted_by(N) v -> v
__sized_by(N) v > v
__ended_by(N) v > v
__null_terminated v v const char *
__single v v]Ic:iglr:jcsti/oglglgc;’i:types [struct
__indexable (2x bigger) > v
__bidi_indexable (3x bigger) o 4 Locals

__unsafe_indexable v e Pointers in system headers

=D

Optimization to remove
redundant bounds checks

Optimization to remove redundant run-time checks

Optimization to remove redundant run-time checks

 Automatic bounds checks may introduce redundant checks

55

Optimization to remove redundant run-time checks

 Automatic bounds checks may introduce redundant checks

(size t 1 = 0; i < count; ++1i) {
(i <@ || 1 >= count) trap(); // automatically added bounds checks
buf[i] = 1i;
}

55

Optimization to remove redundant run-time checks

 Automatic bounds checks may introduce redundant checks

(size t 1 = 0; 1 < count; ++i) {
(i <@ || 1 >= count) trap(); // automatically added bounds checks
buf[i] = 1i;
}

55

Optimization to remove redundant run-time checks

 Automatic bounds checks may introduce redundant checks

(size t 1 = 0; i < count; ++1i) {
(i <@ || 1 >= count) trap(); // automatically added bounds checks
buf[i] = 1i;
}

55

Optimization to remove redundant run-time checks

 Automatic bounds checks may introduce redundant checks

 LLVM optimizer remove redundant checks

(size t 1 = 0; i < count; ++1i) {
(i <@ || 1 >= count) trap(); // automatically added bounds checks
buf[i] = 1i;
}

55

Optimization to remove redundant run-time checks

 Automatic bounds checks may introduce redundant checks
 |LLVM optimizer remove redundant checks

* Primary motivation for the constraint-elimination pass we implement in LLVM

(size t 1 = 0; i < count; ++1i) {
(i <@ || 1 >= count) trap(); // automatically added bounds checks
buf[i] = 1i;
}

55

Constraint elimination to remove redundant checks

* Collect known conditions through CFG

e Remove redundant checks based on the known conditions

(size t 1 = 0; 1 < count; ++i) {
// known fact: 0 <= 1 < count
(i <@ || 1>= count) trap(); // <- always false’
bufl[i] = i;
}

 Fewer checks will be inserted if the code already has most of the necessary
bounds checks

56

Constraint elimination to remove redundant checks

* Collect known conditions through CFG

e Remove redundant checks based on the known conditions

(size t 1 = 0; 1 < count; ++i) {
// known fact: 0 <= 1 < count
(i <@ || 1>= count) trap(); // <- always false’
bufl[i] = i;
}

 Fewer checks will be inserted if the code already has most of the necessary
bounds checks

56

Constraint elimination to remove redundant checks

* Collect known conditions through CFG

e Remove redundant checks based on the known conditions

(size t 1 = 0; 1 < count; ++i) {
// known fact: 0 <= 1 < count
(i <@ || 1>= count) trap(); // <- always false’
bufl[i] = i;
}

 Fewer checks will be inserted if the code already has most of the necessary
bounds checks

56

Constraint elimination to remove redundant checks

* Collect known conditions through CFG

e Remove redundant checks based on the known conditions

(size t 1 = 0; 1 < count; ++i) {
// known fact: 0 <= 1 < count
(i <@ || 1>= count) trap(); // <— always false’
bufl[i] = i;
}

 Fewer checks will be inserted if the code already has most of the necessary
bounds checks

56

Constraint elimination to remove redundant checks

* Collect known conditions through CFG

e Remove redundant checks based on the known conditions

(size t 1 = 0; 1 < count; ++i) {
// known fact: 0 <= 1 < count
(0) trap(); // <- always " false’
bufl[i] = i;
}

 Fewer checks will be inserted if the code already has most of the necessary
bounds checks

56

Constraint elimination to remove redundant checks

* Collect known conditions through CFG

e Remove redundant checks based on the known conditions

(size t 1 = 0; 1 < count; ++i) {
// known fact: 0 <= 1 < count

bufl[i] = 1i;
¥

 Fewer checks will be inserted if the code already has most of the necessary
bounds checks

56

Performance impact

Benchmark results

w/ Ptrdist and Olden benchmark suites

* Pointer-intensive benchmark suites used by other related approaches

* Did not adopt two benchmarks, one in Ptrdist and one in Olden

58

Benchmark results

w/ Ptrdist and Olden benchmark suites

Benchmark results

w/ Ptrdist and Olden benchmark suites

 LOC changes: 2.7% (0.2% used unsafe constructs)

59

Benchmark results

w/ Ptrdist and Olden benchmark suites

 LOC changes: 2.7% (0.2% used unsafe constructs)

 Much lower than prior approaches

59

Benchmark results

w/ Ptrdist and Olden benchmark suites

 LOC changes: 2.7% (0.2% used unsafe constructs)
 Much lower than prior approaches

 Compile-time overhead: 11%

59

Benchmark results

w/ Ptrdist and Olden benchmark suites

 LOC changes: 2.7% (0.2% used unsafe constructs)
 Much lower than prior approaches
 Compile-time overhead: 11%

 Code-size (text section) overhead: 9.1% (ranged -1.4% to 38%)

59

Benchmark results

w/ Ptrdist and Olden benchmark suites

 LOC changes: 2.7% (0.2% used unsafe constructs)
 Much lower than prior approaches
 Compile-time overhead: 11%

 Code-size (text section) overhead: 9.1% (ranged -1.4% to 38%)

* Run-time overhead: 5.1% (ranged -1% to 29%)

59

Benchmark results

w/ Ptrdist and Olden benchmark suites

 LOC changes: 2.7% (0.2% used unsafe constructs)
 Much lower than prior approaches
 Compile-time overhead: 11%
 Code-size (text section) overhead: 9.1% (ranged -1.4% to 38%)
* Run-time overhead: 5.1% (ranged -1% to 29%)

* Tend to rely more on run-time checks with benefit of lower adoption cost

59

Benchmark results

w/ Ptrdist and Olden benchmark suites

 LOC changes: 2.7% (0.2% used unsafe constructs)
 Much lower than prior approaches
 Compile-time overhead: 11%
 Code-size (text section) overhead: 9.1% (ranged -1.4% to 38%)
* Run-time overhead: 5.1% (ranged -1% to 29%)
* Tend to rely more on run-time checks with benefit of lower adoption cost

 Can be improved with optimization improvements

59

System-level performance impact

e Measurement on iOS

* 0-8% binary size increase per project
 No measurable performance or power impact on boot, app launch

* Minor overall performance impact on audio decoding/encoding (1%)

o System-level performance cost is remarkably low and worth paying for
the security benefit

60

Acknowledgments

 Felix Cloutier

o Patryk Stefanski
 Dan Liew

* Henrik Olsson

* Florian Hahn

* Devin Coughlin

« Filip Pizlo

61

-fbounds-safety iIs coming to LLVM community

-fbounds-safety iIs coming to LLVM community

» -fbounds-safety is a bounds safe C extension widely adopted in shipping software
running on all Apple platforms, offering:

-fbounds-safety iIs coming to LLVM community

» -fbounds-safety is a bounds safe C extension widely adopted in shipping software
running on all Apple platforms, offering:

 ABI compatiblility

62

-fbounds-safety iIs coming to LLVM community

» -fbounds-safety is a bounds safe C extension widely adopted in shipping software
running on all Apple platforms, offering:

 ABI compatiblility

* |ncremental adoption

62

-fbounds-safety iIs coming to LLVM community

» -fbounds-safety is a bounds safe C extension widely adopted in shipping software
running on all Apple platforms, offering:

* ABI compatibility
* |ncremental adoption

e Moderate annotation burden

62

-fbounds-safety iIs coming to LLVM community

» -fbounds-safety is a bounds safe C extension widely adopted in shipping software
running on all Apple platforms, offering:

* ABI compatibility
* |ncremental adoption
 Moderate annotation burden

* Source compatibility with C

62

-fbounds-safety iIs coming to LLVM community

» -fbounds-safety is a bounds safe C extension widely adopted in shipping software
running on all Apple platforms, offering:

* ABI compatibility

* |ncremental adoption
 Moderate annotation burden
* Source compatibility with C

* Planning to upstream and standardize the language model

62

-fbounds-safety iIs coming to LLVM community

» -fbounds-safety is a bounds safe C extension widely adopted in shipping software
running on all Apple platforms, offering:

 ABI compatiblility
* |ncremental adoption
 Moderate annotation burden
* Source compatibility with C
* Planning to upstream and standardize the language model

 RFC is coming soon — we are very excited to get your feedback!

62

