
An LLVM Implementation of SSAPRETanya Brethour Joel Stanley Bill WendlingUniversity of Illinois at Urbana-Champaign{tbrethou,jstanley,jwendlin}�uiu.eduDeember 8, 20021 IntrodutionOne of the primary goals of a ompiler is to eliminate redundant omputations present in the input program.Suh redundany elimination is espeially bene�ial in loops, sine eliminating omputations from a fre-quently exeuted region of ode an lead to massive performane gains in the program overall. Two indepen-dent ompiler optimizations are ustomarily used to eliminate redundanies: Global Common SubexpressionElimination (GCSE) and Loop Invariant Code Motion (LICM). GCSE essentially replaes omputation siteswith a saved version of a omputation, provided that the value of the omputation has not been altered sinethe last time it was made. Loop-invariant ode motion is responsible for hoisting loop-invariant omputationsfrom the body of a loop or loop nest, provided that it an safely do so.However, neither LICM nor GCSE an handle partial redundanies: redundant omputations that ouron some exeution paths reahing a given point, but not on others. Addressing this de�ieny is the goal ofa powerful data�ow-based optimization known as Partial Redundany Elimination (PRE). PRE e�etivelysubsumes both LICM and GCSE, in addition to safely transforming partial redundanies to full redundanies,whih an then be removed.In this report we present implementation details, empirial performane data, and notable modi�ationsto an algorithm for PRE based on [1℄. In [1℄, a partiular realization of PRE, known as SSAPRE, isdesribed, whih is more e�ient than traditional PRE implementations beause it relies on useful propertiesof Stati Single-Assignment (SSA) form to perform data�ow analysis in a muh more sparse manner than thetraditional bit-vetor-based approah. Our implementation is spei� to a SSA-based ompiler infrastrutureknown as LLVM (Low-Level Virtual Mahine).This paper desribes the urrent state of our implementation using the LLVM infrastruture, and delin-eates important modi�ations to the algorithm desribed in [1℄.2 Existing WorkPRE was �rst developed by Morel and Renvoise [1979℄. Their implementation used data�ow analysis todetermine partial redundanies and eliminate them. This method was enhaned by the introdution of aode plaement strategy alled lazy ode motion (LCM) [3℄, whih �nds the optimal plaement for odewithin a ontrol �ow graph (CFG). However, the previous versions of PRE are based on a bit-vetor formu-lation of the problem and on the iterative solution of data �ow equations[1℄. The primary drawbak to theappliation of bit-vetor-based data�ow optimizations to an SSA intermediate representation is the high ostof representational onversion. In order to propagate the data�ow prediates properly, the IR is essentiallytaken out of SSA form prior to the analysis and put bak into SSA form after, a proess whih inurs highompile-time ost.The SSAPRE paper provides an SSA-based version of PRE whih ombines the optimal plaementproperties of the previous algorithms for PRE with SSA's sparse use-de�nition information. In partiular,it leverages features of SSA suh as the single-assignment property and dominane invariants so that PREanalysis osts are greatly redued in omparison to the traditional approahes.[1℄1



3 Overview3.1 De�nitionsWe �rst present a few de�nitions from [1℄ whih we use throughout this paper:De�nition (Redundant): If E1 and E2 are ourrenes of some omputation E and there is a ontrol �owpath from E1 to E2 ontaining nothing that may alter the value of E, we say that E2 is redundant withrespet to E1.[1℄De�nition (Partially Available): We say a omputation is partially available at some point p in the pro-gram if there is a ontrol �ow path leading to p from some real ourrene of the omputation and notrossing anything that may alter the value of the omputation.[1℄De�nition (Partially Redundant): We say an ourrene ! is partially redundant if it is an ourrene ofa omputation that is partially available just before !.[1℄De�nition (�): In the same way that the literature uses a � operator in SSA form to fator the use-def relation for variables, we introdue a � operator that fators the redundany relation for omputationourrenes.[1℄De�nition (?): There an be operands of � that are not partially redundant; these have no ounterpartin SSA form, and we denote them by the symbol ?.[1℄De�nition (Representative Ourrene): We de�ne the representative ourrene for an expression tobe the nearest expression that is either a � Ourrene or a non-partially redundant real ourrene thatdominates the expression. [1℄3.2 SSAPRE AlgorithmThe paper presents two versions of the SSAPRE algorithm. The �rst version provides everything neessaryto reate a working version of SSAPRE for a ompiler. There are six steps in the algorithm: � Insertion,Rename, DownSafety, WillBeAvail, Finalize, and CodeMotion. However, this version isn't sparse (thereare potentially extraneous � nodes plaed into the graph, and the naive rename algorithm onsiders manyversions of variables that may not appear in any PRE andidate expression) and deals with all of theexpressions in the program simultaneously, whih an indue a large memory footprint.The seond version of the algorithm is a pratial implementation of SSAPRE. It is a worklist drivenversion of the algorithm and requires a prepass over the ode to ollet all lexially identi�ed ourrenes ofexpressions into lexially equivalent sets. One this is done, however, we no longer need to look at all of theode again but only at the olleted ourrenes. Eah olleted ourrene set is plaed into the worklistthen removed one at a time so that the algorithm an be applied to it. The pratial implementationalgorithm replaes the �rst two parts of the initial algorithm � � Insertion and Rename � with a demand-driven version of � Insertion and a delayed version of Rename. See Figure 1 for a graphial representationof the implementation of the worklist driven algorithm.We hose to implement the worklist driven version of the algorithm.4 ImplementationWhile we hose to implement the worklist driven version of the SSAPRE algorithm, our implementationdoesn't atually use the worklist in the way a traditional worklist is used. In the paper, the worklist isneeded for �ompound� expressions (those of the form a+ b� , where a+ b is a subexpression of the wholeexpression). LLVM is a three-address representation and doesn't allow for ompound expressions.2



Figure 1: PRE Worklist Driven Approah from [1℄4.1 AssumptionsThe assumptions that we make are as follows (the �rst two assumptions are diretly stated in the paper,and the latter two an easily be inferred):� "Eah � assignment has the property that its left-hand side and all of its operands are versions of thesame original program variable"[1℄� "The live ranges of di�erent versions of the same original program variable do not overlap"[1℄� All ritial edges are broken; and� We have aess to the dominator tree and dominane frontiers of basi bloksBeause of the �rst two assumptions, we need to disable running a few optimization passes before our passis run. In partiular, instombine, mem2reg, and reassoiate shouldn't be run as they ould potentiallyviolate the �rst two assumptions. Of ourse, sine our pass is supposed to subsume GCSE and LICM, bothgse and lim shouldn't be run. In order to ensure that ritial edges have been broken, the break-rit-edges is required before our pass.4.2 Data StruturesOur implementation of the algorithm is based on infrastruture that onsists of a hierarhy of Ourrenelasses. There are 5 types of ourrenes: Real, �, � Operand, Exit, and Inserted; their instanes trakany information about them that the paper spei�es as neessary. The main Ourrene lass maintainsinformation that is shared by all types of ourrenes. This information inludes: the basi blok it existsin, the instrution it represents, the ahed temporary instrution that saves the result (if any), and theRedundany Class Number (RCN). The Real Ourrene lass has additional �ags assoiated with it suhas: Reload, Save, and a pointer to its representative Ourrene. � Ourrenes have �ags to indiate3



whether they are downsafe, extraneous, �anbeavail�, or are �later�. � Operand ourrenes maintain whattheir representative ourrene is, what � they belong to, what instrution would be inserted there if needed,and a �ag indiating if they have a real use. Inserted Ourrenes and Exit Ourrenes do not store anyadditional information.4.3 Pass DetailsThe SSAPRE algorithm is done in six separate phases, whih are disussed in detail below.4.3.1 Collet OurrenesThe main idea behind the Collet Ourrenes phase is to identify lexially identi�ed1 expressions to partitionthem in to equivalene lasses (also referred to as �ourrene sets�). Unfortunately, the authors do notdesribe any information how this is best aomplished.Sine LLVM does not expliitly represent the �SSA version� of a partiular �original� program variable,we disover versions of the same SSA variable by examining where values are merged by �-nodes in the SSArepresentation. Whenever we witness a �-node in the linear san of the program instrutions2, we onsiderthe def of the � and its operands �equivalent� for purposes of hashing expressions to the proper lexially-identi�ed equivalene lasses. The hashing step an be made more e�etive through the previous appliationof reassoiation, but we have not fully explored the e�ay of suh reassoiation, as the LLVM reassoiationpass has the potential to violate the �-operand deadness invariant required by the SSAPRE algorithm. Fore�ieny, we use a Union-Find mehanism with both Union-By-Rank and Path Compression, so that theruntime ost of determining di�erent versions of the same variable is a small �onstant�3 for any oneivableprogram size.[4℄4.3.2 � InsertionOur implementation uses the demand-driven � Insertion algorithm[1℄. �The resulting algorithm is sparse inthe sense that all the �s inserted are justi�ed either by appearing in the iterated dominane frontier of somereal ourrene of the expression or by appearing at a point where the expression is partially antiipated.�[1℄With LLVM, sparse � insertion is easy. Using the dominane frontier information supplied by LLVM,we determine the iterated dominane frontier (IDF) for the basi blok of an expression's real ourrene.That is, we get the initial dominane frontier for the original basi blok and then reurse on eah individualbasi blok in that dominane frontier adding to the IDF if it isn't in there already. Also, LLVM providesquik aess to the de�nitions of operands in expressions, so determining if they were SSA � nodes or not issimple. This involves a reursive step on the � node to see if its operands were de�ned by � nodes or not.4.3.3 RenameThe primary purpose of the Rename pass is to assign redundany lass numbers (RCNs) to eah ourrenewhih plaes them into equivalene lasses. Two ourrenes with equivalent RCNs have the same valuethroughout the program. That is, they are a re�nement of the ourrene sets, whih are populated withlexially identi�ed expressions. Furthermore, it is straightforward to onlude that any two ourrenes alonga ontrol path with two di�erent RCNs will have a rede�nition of one of their variables at some point betweenthe ourrenes on that path. The seondary purpose of Rename is to onstrut the Fatored RedundanyGraph (FRG). The FRG is de�ned as a olletion of real ourrenes, and �± in the same redundany lass,whih represent the nodes. Upward edges in the FRG are from eah partially redundant � Operand or RealOurrene to their representative ourrene.The non-worklist driven approah for Rename is modeled after the SSA Renaming algorithm in [5℄,modi�ed slightly to maintain a stak for eah expression in addition to staks for eah variable. The sole1Reall that two expressions are lexially identi�ed if their respetive operands are versions of the same program variable.Thus, a5 + b4 is lexially identi�ed with a0 + b192This is the only time the entire program is visited by SSAPRE3That is, the Inverse Akerman's funtion 4



purpose of having the version staks for the variables is to determine whether or not a new RCN needs tobe assigned. Beause performing rename this way requires the examination of many versions of variablesthat may not appear in any PRE andidate expression, the algorithm is not sparse. Thus, Kennedy et al.presents an alternative algorithm alled Delayed Renaming[1℄.For pure redundany lass assignment, Delayed Renaming uses a redundany lass stak for the expressionbeing analyzed. Delayed Renaming maintains the invariant that, at any point during analysis, the top of thestak represents the urrent RCN and the representative ourrene node for the expression. Eah RCN hasa representative ourrene, whih means that we an safely replae other ourrenes with the same RCNand still maintain the original program semantis. This is due to the property expressed above that twoourrenes of the same RCN have the same value. A representative ourrene is always a real ourreneor a � Ourrene, and � Ourrenes always get a new RCN (sine they represent a merge of expressionomputations), so there are only four situations that might arise when attempting to assign a RCN to anOurrene:1. The top of the stak is a Real Ourrene and(a) Our urrent ourrene is a Real(b) Our urrent ourrene is a � Operand2. The top of the stak is a � Ourrene and(a) Our urrent ourrene is a Real(b) Our urrent ourrene is a � OperandDelayed Renaming is performed in two steps. The �rst, Rename1, proesses eah Ourrene separately,pushing items onto the stak when they are assigned a new RCN, and popping items if they do not dom-inate the urrent ourrene. If the top of the stak is a Real Ourrene, we have the urrent version ofthe variables available and assigning a new RCN is as simple as omparing those versions to the urrentourrene. In LLVM there is no notion of versions, so this is equivalent to performing omparisons of eahoperand's Value pointer. If the top of the stak is a � Ourrene, the versions of variables are not provided.To resolve this issue, Rename1 uses dominane information to determine whih RCN is appropriate. Thisdominane relation is that if all variable de�nitions of the urrent ourrene dominate the � Ourrene atthe top of the stak, then the versions are idential[1℄.However, there is one small detail overlooked in Rename1. When the urrent Ourrene is a � Operand,there exists no Real Ourrene whih an provide us with the urrent versions of the variables. In theseases, Rename1 makes an optimisti assumption and assumes that the top of the redundany lass stakprovides its variables versions and therefore is given the same RCN. This assumption is either orret or the� operand will have no representative ourrene, ?. Having no representative ourrene means that the� Operand is not partially redundant. Rename1 keeps trak of eah Real Ourrene that is de�ned by a �and plaes them into a set to be proessed. This set is proessed by Rename2 whih orrets the optimistiassumption regarding � operands if neessary.Rename2 proesses eah item in the set onstruted by Rename1. Eah of these Real Ourrenes arede�ned by a � and provides the versions of the variables at that � that de�nes it. Rename2 �rst obtainsthe � for the Real Ourrene and notes what basi blok it resides in. If there exists a � for any of thevariables of that Real Ourrene in the basi blok of its de�ning �, we must double hek our optimistiassumption made to the � operands.For eah � Operand, a Real Ourrene is manufatured with the orret versions of the variables at thatpoint. The � for the variable provides us with the version to use when manufaturing this real ourrene.The manufatured Real Ourrene is ompared to the representative ourrene for the � Operands. If therepresentative ourrene is a Real Ourrene then pointers are ompared. If it is a � Ourrene, we hekif all the de�nitions of the variables in the manufatured ourrene dominate that �. If not in either ase,the optimisti assumption was indeed wrong and the � Operand is set to ?. If the RCN is determined tobe orret and the representative ourrene is a �, the manufatured ourrene needs to be added to theset for further proessing in order to ensure that the operands of that � are also orret.5



It is important to note that the paper did not explain how to reate this manufatured real ourrene,nor how its def edge ought to be set. Initially it seemed as simple as loning the Real Ourrene, but laterproved to be more ompliated beause a ritial detail was simply left out in the algorithm. The edge inthe FRG from this manufatured ourrene must not be an exat opy, but should be to the representativeourrene for the � Operand being examined. It is ritial to reursively hek � Ourrenes and theiroperands as mentioned above.Upon ompletion, Delayed Renaming will have assigned RCNs, and reated FRGs for eah redundanylass of the variable. This �rst pass is ruial to the suess of the algorithm as a whole and during ourimplementation and testing, several bugs have been linked bak to this pass due to its omplexity.4.3.4 DownSafetyIn order for PRE to insert a omputation it must be down safe or fully antiipated at the point of insertion[1℄.Down safety is used to ensure that new exeptions or redundany are not introdued by inserting an ex-pression. Sine insertions are only done at � Operands, it is su�ient to determine down safety only at �Ourrenes. Note that it is only safe to do so beause we require ritial edges to be broken. DownSafetyis done in two steps: Initialization and Propagation. In addition to determining DownSafety, this pass alsosets the hasRealUse �ags for � Operand Ourrenes.In order for a � Ourrene to not be down safe, there must exist a ontrol �ow path from the � suhthat the expression is either not omputed prior to an exit or is not omputed prior to a rede�nition of one ofits operands[1℄. Beause Rename is already proessing the Ourrenes in DT preorder, it is an appropriateplae to perform the initialization. While the paper gives exellent details on what modi�ations to make tothe non-worklist driven rename algorithm, it does not give any information on how to modify the delayedrename pass. Therefore, it took a signi�ant amount of time to ome up with the orret approah.All downsafety �ags are initialized to true, whih is an optimisti assumption. Down safety an only beset to false if we see an Exit Ourrene before a Real Ourrene, or before a � Operand that is de�nedby a down safe �. The paper suggests that whenever Rename assigns a Real Ourrene a new RCN, sets a� Operand to ? or enounters a program exit, it heks the top of the stak to see if it is a � Ourrene.If so, it will reset that �'s downsafety �ag. This approah seems reasonable, exept in delayed RenamingOurrenes are only pushed onto the stak if they are assigned a new redundany lass number. However,there are ases where a Real Ourrene is given the same RCN as a � or another Real Ourrene andonsequently it is not pushed onto the stak. If a Real Ourrene is not pushed onto the stak and thenext Ourrene is an Exit Ourrene, it presents a problem during down safety initialization. It will markthe � not down safe beause it never witnessed the Real Ourrene at the top of the stak. This is also aproblem for setting hasRealUse �ags, where � Operands will not see a Real Ourrene on the top of thestak and their hasRealUse �ags will be inorretly set to false.It is not su�ient to have only the stak desribed in Rename1 and still initialize the downsafety andhasRealUse �ags appropriately. Therefore, we keep another stak that keeps trak of all of the Ourrenesthat dominate the urrent expression and that have been proessed. When determining if down safety shouldbe reset or hasRealUse should be set, it looks at the top of this seond stak. We avoid the problem of missinga Real Ourrene that was not assigned a new RCN.The seond part of downsafety is to propagate a non-down safe value to any �'s that have operands thatuse the non-down safe � as their representative ourrene. This is a simple walk of the FRG.4.3.5 WillBeAvailThe WillBeAvail step tells us if a value will be available at a � ourrene following insertions. If the � hasits will_be_avail prediate set but a value isn't available there, later steps will insert an ourrene of theexpression at this point. This, ombined with the DownSafety step, gives us the optimal plaement for newexpressions in the �nal CFG.The algorithm starts where DownSafety ends. It alulates if a value an be available at a � and whetheror not it an be plaed �later� in the CFG. The algorithm reursively visits eah � node either learingor setting the an_be_avail and later �ags. The will_be_avail prediate is determined by the followingequation: 6



will_be_avail = an_be_avail ^ :later4.3.6 FinalizeFinalize is responsible for transforming the FRG into a new form that re�ets insertions and no � Operand is?. In addition this new form is optimized by removing any extraneous � Ourrenes. The pass is separatedinto two parts: Finalize1 and Finalize2.Finalize1 is responsible for determining whih Real Ourrenes should be reloaded from a temporary oromputed. It uses a STL map to assoiate redundany lass numbers to their available de�ning ourrene.Eah Ourrene is proessed in a preorder dominator tree traversal. Upon enountering a Real Ourrenethe map for an available de�nition is aessed for its RCN. If no de�nition exists, or the de�nition doesnot dominate the Real Ourrene, it will beome its RCN's de�ning ourrene and reset its reload �ag.Otherwise, the Real Ourrene will set its reload �ag to true and update the FRG by hanging its upwardedge to point to the available de�nition. When Finalize1 proesses a � Ourrene, it will only make this �the available de�nition for its RCN if it satis�es will_be_avail.Lastly, when proessing � Operands Finalize1 must deide whether it is possible to insert an expressionand hange its representative ourrene to the Inserted Ourrene. In order to insert an expression, twoonditions must hold[1℄:1. The � that it belongs to must satisfy will_be_avail2. The � Operand must be ?; or hasRealUse �ag is false and its representative ourrene is a � thatdoes not satisfy will_be_availIf insert is satis�ed, the urrent expression at the plae the � Operand ours in the CFG should beinserted. While this step seems very straight-forward, no details are provided in the paper about obtainingthe orret expression to insert. Due to the fat that we implemented the worklist driven approah, it isine�ient to pass over the program to �nd the orret versions of the variables to formulate this insertedexpression. Rather, the proper plae to perform this analysis is in the Rename pass. This is a modi�ation tothe Rename algorithm not mentioned in the paper. When proessing the � Operand Ourrenes, Rename2is aware of the urrent versions of variables at that point in the program. It is trivial to reate the insertedinstrution at that point, in the event that it is needed by Finalize in the future. It is a signi�antly moree�ient to have this inserted instrution ahed, versus obtaining it during the Finalize pass. If insert is notsatis�ed, the � Operand will update its representative ourrene to point to the available de�nition.Finalize2 marks eah Real Ourrene that is not reloaded as saved, and removes extraneous � 's tominimize the FRG. While not ruial to the suess of PRE, leaving extraneous � 's requires more spae inprogram representation and may impat the e�ieny of future optimizations[1℄. However, removing theseextraneous � 's requires that the ourrenes in its RCN refer to a di�erent lass whih de�nes the value ofthe � Ourrene.Finalize2 begins by setting eah � in the FRG that satis�es will_be_avail to be extraneous. Reall thatthe save �ags for Real Ourrenes were initialized to false. Finalize2 then looks at eah Real Ourrenethat has its reload �ag set. If it is to be reloaded, it must update its representative ourrene by allingSet_save(). Set_save() looks at the representative ourrene, and if it is a a Real Ourrene the save �agfor that Real is set to true. Otherwise, if it is a � Ourrene it will reursively all Set_save() in eahof its � Operand Ourrenes. Lastly, if the representative ourrene is a Real or Inserted Ourrene, itwill delare eah � in its iterated dominane frontier to be extraneous. Finalize2 then needs to remove theextraneous � 's and update the FRG aordingly.The algorithm for Finalize2 did not work aording to the paper. When removing extraneous � 's in�niteloops were ourring. This was due to the paper leaving out the detail that one a � has been removed andits FRG updated, it should not be proessed again.4.3.7 CodeMotionAn algorithm for CodeMotion wasn't given expliitly in the paper. We ame up with the following algorithmbased on the desription given in [1℄. 7



for f 2 F in preorder traversal of the Dominator Tree doif f is a real ourreneif save(f)generate_save(f)else if reload(f)generate_reload(f)else if f is a �generate_ssa_phi(f)else if f is a � operandgenerate_reload(f)else if f is an inserted ourrenegenerate_save(f)endAfter the Finalize phase is �nished, we have a set with Real Ourrenes, � nodes, � operand, andInserted Ourrenes.For Real Ourrenes, if they are to be �saved,� we generate a save of that expression to a temporary. InLLVM, this involves reating a ast of the Real Ourrene's instrution and plaing it in the CFG after thatinstrution. This will at as this instrution's �urrent temporary version.� If the Real Ourrene shouldbe �reloaded,� then we generate a reload of the instrution. This is done by simply taking the ourrene'sde�ning instrution's urrent temporary version and replaing the instrution with that urrent temporary.For � nodes, we notie that these are the plaes where two or more expressions are merged in the CFG.The expressions oming in are in registers (Value*s in LLVM). We reate an SSA � node to perform thismerging.For � operands, we want to reload the temporary value of its de�ning instrution. In our implementa-tion, this doesn't require any modi�ations sine we will use the � operand's de�ning instrution's urrenttemporary instead of doing an atual insertion of ode at this point.For Inserted Ourrenes, we need to generate a save of the instrution into a temporary variable. Wetreat this in same way we treat a Real Ourrene that is to be saved.4.4 Limitations & WeaknessesAfter muh disussion, it was determined that the SSAPRE algorithm should only need to be run one onthe ode to gain the full bene�ts of PRE. However, it requires that the ourrene sets that are olletedfor eah expression type be topographially sorted and run in order. That is, if an expression in set A usesthe result of an expression in set B, then set B should be run through the algorithm before set A. Ourimplementation doesn't keep this topographial ordering.Our algorithm urrently does not use the value numbering interfae to �nd expressions that produethe same value, but are not lexially equivalent. As a side e�et of this, we are unable to take advantageof the load-vn value numbering pass, whih would allow our algorithm to transparently handle partiallyredundant loads disambiguated by a user-seletable alias analysis implementation. We onsider this to be astraight-forward extension of our urrent implementation, whih will be easy to implement one the otherde�ienies of the underlying algorithm are �xed.Running our pass on ode twie results in ode whih is no longer orret; unfortunately, this fat seemsto be from a latent bug whih would require more time to �nd than we had.4.5 StatusThe implementation of SSAPRE is almost omplete. At the time of this report, our implementation issuessfully removing partial redundanies properly from a good deal of input odes, although there are stillsome bugs present whih we did not have time to �x. In partiular, we ran into some falsi�ability issues withour input odes, in the sense that it was di�ult to asertain whether or not the �-operand deadness invarianthad been maintained by preoptimization passes. As we see it, there are four primary ations whih must8



our before our implementation is robust enough to be fully integrated into LLVM as a drop-in replaementfor GCSE and LICM:� More testing to expose latent bugs and �x the existing ones.� A solution to the �-operand deadness invariant that is ompile-time e�ient and orret. This isprimarily to relax the stringent requirements imposed by the provided SSAPRE algorithm [1℄. Theauthors of [1℄ do disuss the possibility of relaxing this riteria, but do not go into detail.� Determine how value numbering information (partiularly for load instrutions) an be used to inreasethe e�ay of PRE.� Implement a topologially-ordered expression visitation mehanism so that our implementation SS-APRE an be more aggressive in disovering redundanies in the input ode.5 Issues with PaperWhile the algorithm presented in this paper takes advantage of the sparseness of SSA and an perform om-parable to LICM and GCSE, it unfortunately has a few drawbaks. The biggest drawbak is the requirementthat live ranges of SSA versions of the same variable an not overlap. While this is holds true immediatelyafter SSA onstrution, it is not guaranteed to hold true after several optimizations have been performedon a given program. To assume that PRE is to operate in a vauum isn't valid. Most likely it will ournear the end of a long list of optimizations. Therefore, it is our belief that further researh is needed on thisalgorithm to avoid this requirement.The majority of the phases of the SSAPRE algorithm were presented in a fairly straightforward manner.However, there were signi�ant, ruial gaps left for the reader to infer and some implementation detailsmissing from the algorithms presented in the �gures but stated in a few lines in the text. In partiular itseems as though the Worklist driven setion was not detailed. The status of partiular phases with respetto how useful the paper was is as follows:� Collet Ourrenes � No algorithm or details on how to do this.� Rename � No details on what it really means to opy a real ourrene (in partiular, how to set thedef edge properly for manufatured real ourrenes).� Down Safety � No details on how to do initialization in the delayed renaming algorithm� Finalize � We witness an in�nite loop in set_replaement for the implementation given in the paper.We have �xed the problem and believe that we are orret, but there is a bit of unertainty present.Furthermore, no information is provided regarding the ontents of the inserted ourrenes. In parti-ular, the algorithm does not expliitly state how to onstrut the ourrene to insert at a �operandwhen insert is satis�ed.6 Experimental ResultsTable 1 shows how SSAPRE performs on some of the benhmarks that work under the LLVM infrastruture.Due to some problems with the Spar bak-end, we used the lli ommand line utility to interpret LLVMbyteode and ount the number of dynami instrutions. In almost all ases, we see a marked redution inthe number of dynami instrutions generated, whih orresponds diretly to the elimination of redundantomputations.The �Raw� on�g denotes appliation of PRE to raw, unoptimized byteode, and �Opt� refers to appli-ation of PRE after many preoptimization passes4. We onsider the Opt version of Olden_perimeter to be4In partiular, funresolve, globalde, deadtypeelim, onstantmerge, veri�er, deadinstelim, raiseallos, indvarsimplify, raise-pointerrefs, mem2reg, simplifyfg, sp, instombine, aggressivede, simplifyfg9



Benhmark Con�g No PRE PRE % ImprovementmatTranspose Raw 761157 591739 28.63sumarray Raw 3848 3424 12.38Du�sDevie Raw 3750 3554 5.51pi Raw 95446 78008 22.35sumarray2d Raw 512250 452464 13.21sumarraymallo Raw 4697 4215 11.44test_indvars Raw 724987 583004 24.35Olden_tsp (512) Raw 9206950 8889874 3.57Olden_treeadd (10) Raw 4508523 4295345 4.96Olden_treeadd (10) Opt 1986671 1986671 0.0Olden_health Raw 215848 201590 7.07Olden_perimeter (5) Raw 2728844 2618785 4.20Olden_perimeter (5) Opt 1248856 1310623 -4.71Table 1: Dynami instrution redution resulting from appliation of SSAPREan outlier 5, and presume that no redundanies existed in the Opt version Olden_treeadd.Table 2 ompares the dynami instrution redution indued by PRE vs. appliation of LLVM's GCSEand LICM implementation. % ImprovementBenhmark Con�g GCSE/LICM PRE (PRE vs LICM)Olden_tsp (512) Raw 7867153 8889874 -11.5Olden_treeadd (10) Raw 4170526 4295345 -2.91Olden_treeadd (10) Opt 1973272 1986671 -0.67Olden_health Raw 172438 201590 -14.46Olden_perimeter Raw 2378062 2618785 -9.19Olden_perimeter Opt 1189636 1310623 -9.23Table 2: Dynami instrution redution in GCSE/LICM vs. SSAPREUnfortunately, our implementation of SSAPRE doesn't beat the LLVM implementation of GCSE andLICM. We believe this to be beause we are not using value numbering information to disover more redun-danies than those available to the analysis by onsidering only lexially identi�ed expressions. Furthermore,we weren't able to eliminate redundant loads beause value numbering information that simply yields equiv-alene of load instrutions is insu�ient to prove a load redundant and orretly eliminate the redundanyin some ases. For example, if we were to employ (load) value-numbering analysis, two subsequent loadspreeded by a related store in the body of a loop nest may be VN-equivalent and both be proven redundantby our implementation, sine it wouldn't expliitly look for preeding related stores that ought to preventhoisting.It is our belief that the a proper worklist-driven implementation, wherein the expression equivalenelasses are visited in the proper order would set SSAPRE loser to the results obtained via appliation ofGCSE and LICM. Additionally, the appliation of the instombine pass after SSAPRE would be useful,sine SSAPRE introdues a lot of asts whih are able to be folded together (i.e. opy propagation). Wespeulate that this ould be why we witness an inrease in the dynami instrution ount of Olden_perimeter.5We realize that PRE should never inrease number of dynami instrutions; unfortunately, we did not have time toinvestigate this issue 10



7 ConlusionThis wraps up our presentation of the SSAPRE algorithm. We've ompleted an initial implementation of thealgorithm presented in the paper. Eventhough it has some de�ienies, we've learned a lot from the proessof implementation and have identi�ed several problems with the algorithm as presented in the paper.We've shown that PRE is very good at reduing the number of dynami instrutions exeuted and believePRE will be an importat part of an SSA based optimizer when the algorithm matures.Referenes[1℄ Kennedy, R., Chan, S., Liu, S., Lo, R., Tu, P., and Chow, F. 1999. Partial Redundany Elim-ination in SSA Form. In ACM Transations on Programming Languages and Systems, Vol. 21, No. 3.627-674.[2℄ Morel, E. and Renviose, C. 1979. Global optimization by suppression of partial redundanies. InCommuniations of the ACM. 96-103.[3℄ Knoop, J., Rüthing, O., Steffen, B. 1992. Lazy Code Motion. In ACM SIGPLAN '92. 224-234.[4℄ Cormen, T., Leiserson, C., Rivest, R, Stein, C. 2001. Introdution to Algorithms, 2nd edition.MIT Press / MGraw-Hill 2001.[5℄ Cytron, R., Ferrante, J., Rosen, B., Wegman, M., Zadek, F. 1991. E�iently ComputingStati Single Assignment Form and the Control Dependene Graph. In ACM Transations on Program-ming Languages and Systems. Vol 3, 4. 451-490.
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APPENDIXA Lazy Code Motion ExampleWe took the CFG from the Lazy Code Motion paper ([3℄ Figure 1) and reated a program in LLVM whihhas the same CFG with omputations in the same basi bloks. Using this, we an determine if our pass isplaing omputations in the optimal plaes predited by [3℄. Though our pass works on all expressions inthe program, for the sake of brevity we will fous only on the �ore� expressions � i.e., those of the form%foo = mul int %a, %b.A.1 Before SSAPRE Pass%.LCA = internal global [ 13 x sbyte ℄ "B%d: A = %d\0A\00" ; <[13 x sbyte*℄>%.LCB = internal global [ 13 x sbyte ℄ "B%d: B = %d\0A\00" ; <[13 x sbyte*℄>%.LCX = internal global [ 13 x sbyte ℄ "B%d: X = %d\0A\00" ; <[13 x sbyte*℄>%.LCY = internal global [ 13 x sbyte ℄ "B%d: Y = %d\0A\00" ; <[13 x sbyte*℄>%.LCZ = internal global [ 13 x sbyte ℄ "B%d: Z = %d\0A\00" ; <[13 x sbyte*℄>%.LCSUM = internal global [ 17 x sbyte ℄ "B%d: Y Sum = %d\0A\00" ; <[17 x sbyte*℄>implementation ; Funtions:delare int %printf(sbyte*, ...)int %main(int %arg, sbyte** %argv) {B1: ; No predeessors!%B1ond = setge int %arg, 2%LCA = getelementptr [13 x sbyte℄* %.LCA, long 0, long 0%LCB = getelementptr [13 x sbyte℄* %.LCB, long 0, long 0%LCX = getelementptr [13 x sbyte℄* %.LCX, long 0, long 0%LCY = getelementptr [13 x sbyte℄* %.LCY, long 0, long 0%LCZ = getelementptr [13 x sbyte℄* %.LCZ, long 0, long 0%LCSUM = getelementptr [17 x sbyte℄* %.LCSUM, long 0, long 0br bool %B1ond, label %B2, label %B4B2:%a0 = ast int 1 to int%b0 = ast int 3 to intbr label %B3B3:%x0 = mul int %a0, %b0all int (sbyte*, ...)* %printf( sbyte* %LCX, int 3, int %x0 )br label %B5B4:%a1 = ast int 1 to int%b1 = ast int 27 to int%x1 = ast int 0 to intbr label %B5B5:;; Expet Fator node here for expr in B3%a2 = phi int [ %a0, %B3 ℄, [ %a1, %B4 ℄ 12



%b2 = phi int [ %b0, %B3 ℄, [ %b1, %B4 ℄%x2 = phi int [ %x0, %B3 ℄, [ %x1, %B4 ℄all int (sbyte*, ...)* %printf( sbyte* %LCA, int 5, int %a2 )all int (sbyte*, ...)* %printf( sbyte* %LCB, int 5, int %b2 )all int (sbyte*, ...)* %printf( sbyte* %LCX, int 5, int %x2 )%B5ond = seteq int %b2, 3br bool %B5ond, label %B6, label %B7B6:%B6ond = seteq int %arg, 3br bool %B6ond, label %B8, label %B9B7:all int (sbyte*, ...)* %printf( sbyte* %LCA, int 7, int %a2 )all int (sbyte*, ...)* %printf( sbyte* %LCB, int 7, int %b2 )all int (sbyte*, ...)* %printf( sbyte* %LCX, int 7, int %x2 )br label %B18B8:%y0 = ast int 0 to int%y_sum0 = ast int 0 to int%ount0 = ast int %x2 to intbr label %B11B10:%y1 = mul int %a2, %b2 ;; This expression is inside of a loop and;; is invariant to that loop. It should be;; moved to basi blok B8.%y_sum1 = add int %y_sum2, %y1%ount1 = sub int %ount2, 1br label %B11B11:;; Expet Fator node here for the expr in B10%y2 = phi int [ %y0, %B8 ℄, [ %y1, %B10 ℄%y_sum2 = phi int [ %y_sum0, %B8 ℄, [ %y_sum1, %B10 ℄%ount2 = phi int [ %ount0, %B8 ℄, [ %ount1, %B10 ℄%B11ond = setge int %ount2, 0br bool %B11ond, label %B10, label %B14B14:all int (sbyte*, ...)* %printf( sbyte* %LCSUM, int 14, int %y_sum2 )br label %B16B9:br label %B12B12:%B12ond = seteq int %arg, 4br bool %B12ond, label %B15, label %B17B15:%y3 = mul int %a2, %b2 ;; This expression won't be moved out of B1513



;; beause this is the earliest position for;; it with respet to those exprs and their;; uses in B15 and B16.all int (sbyte*, ...)* %printf( sbyte* %LCY, int 15, int %y3 )br label %B16B16:;; Expet Fator node here for exprs in B10 and B15%y4 = phi int [ %y3, %B15 ℄, [ %y2, %B14 ℄%z0 = mul int %a2, %b2 ;; This expression will be onverted into an;; assignment beause there are evaluations;; of this expression oming in from B8 and;; B15 after the pass is run.all int (sbyte*, ...)* %printf( sbyte* %LCZ, int 16, int %z0 )br label %B18B17:%x3 = mul int %a2, %b2 ;; This expression will remain here beause;; there's no earlier plaement for this;; omputation that is optimal.all int (sbyte*, ...)* %printf( sbyte* %LCX, int 17, int %x3 )br label %B18B18:;; Expet Fator node here for exprs in B10, B15, B16, B17ret int 0}A.2 Expeted ResultsThe Lazy Code Motion paper [3℄ onludes that the above program should have a omputation of mul int%a, %b in basi bloks B3, B8, B15, and B17 with uses of those omputations in basi bloks B3, B10, B15,B16, and B17 ([3℄ Figure 7). As shown in the next setion, the result of running the SSAPRE pass on theabove ode does just this.A.3 After SSAPRE Pass%.LCA = internal global [13 x sbyte℄ "B%d: A = %d\0A\00" ; <[13 x sbyte℄*> [#uses=1℄%.LCB = internal global [13 x sbyte℄ "B%d: B = %d\0A\00" ; <[13 x sbyte℄*> [#uses=1℄%.LCX = internal global [13 x sbyte℄ "B%d: X = %d\0A\00" ; <[13 x sbyte℄*> [#uses=1℄%.LCY = internal global [13 x sbyte℄ "B%d: Y = %d\0A\00" ; <[13 x sbyte℄*> [#uses=1℄%.LCZ = internal global [13 x sbyte℄ "B%d: Z = %d\0A\00" ; <[13 x sbyte℄*> [#uses=1℄%.LCSUM = internal global [17 x sbyte℄ "B%d: Y Sum = %d\0A\00" ; <[17 x sbyte℄*> [#uses=1℄implementation ; Funtions:delare int %printf(sbyte*, ...)int %main(int %arg, sbyte** %argv) {B1: ; No predeessors!%B1ond = setge int %arg, 2 ; <bool> [#uses=1℄%LCA = getelementptr [13 x sbyte℄* %.LCA, long 0, long 0 ; <sbyte*> [#uses=2℄%LCB = getelementptr [13 x sbyte℄* %.LCB, long 0, long 0 ; <sbyte*> [#uses=2℄%LCX = getelementptr [13 x sbyte℄* %.LCX, long 0, long 0 ; <sbyte*> [#uses=4℄14



%LCY = getelementptr [13 x sbyte℄* %.LCY, long 0, long 0 ; <sbyte*> [#uses=1℄%LCZ = getelementptr [13 x sbyte℄* %.LCZ, long 0, long 0 ; <sbyte*> [#uses=1℄%LCSUM = getelementptr [17 x sbyte℄* %.LCSUM, long 0, long 0 ; <sbyte*> [#uses=1℄br bool %B1ond, label %B2, label %B4B2: ; preds = %B1%a0 = ast int 1 to int ; <int> [#uses=2℄%b0 = ast int 3 to int ; <int> [#uses=2℄br label %B3B3: ; preds = %B2%x0 = mul int %a0, %b0 ; <int> [#uses=2℄all int (sbyte*, ...)* %printf( sbyte* %LCX, int 3, int %x0 ) ; <int>:0 [#uses=0℄br label %B5B4: ; preds = %B1%a1 = ast int 1 to int ; <int> [#uses=1℄%b1 = ast int 27 to int ; <int> [#uses=1℄%x1 = ast int 0 to int ; <int> [#uses=1℄br label %B5B5: ; preds = %B4, %B3%a2 = phi int [ %a0, %B3 ℄, [ %a1, %B4 ℄ ; <int> [#uses=5℄%b2 = phi int [ %b0, %B3 ℄, [ %b1, %B4 ℄ ; <int> [#uses=6℄%x2 = phi int [ %x0, %B3 ℄, [ %x1, %B4 ℄ ; <int> [#uses=3℄all int (sbyte*, ...)* %printf( sbyte* %LCA, int 5, int %a2 ) ; <int>:1 [#uses=0℄all int (sbyte*, ...)* %printf( sbyte* %LCB, int 5, int %b2 ) ; <int>:2 [#uses=0℄all int (sbyte*, ...)* %printf( sbyte* %LCX, int 5, int %x2 ) ; <int>:3 [#uses=0℄%B5ond = seteq int %b2, 3 ; <bool> [#uses=1℄br bool %B5ond, label %B6, label %B7B6: ; preds = %B5%B6ond = seteq int %arg, 3 ; <bool> [#uses=1℄br bool %B6ond, label %B8, label %B9B7: ; preds = %B5all int (sbyte*, ...)* %printf( sbyte* %LCA, int 7, int %a2 ) ; <int>:4 [#uses=0℄all int (sbyte*, ...)* %printf( sbyte* %LCB, int 7, int %b2 ) ; <int>:5 [#uses=0℄all int (sbyte*, ...)* %printf( sbyte* %LCX, int 7, int %x2 ) ; <int>:6 [#uses=0℄br label %B18B8: ; preds = %B6%y0 = ast int 0 to int ; <int> [#uses=2℄%T_3 = ast int %y0 to int ; <int> [#uses=1℄%ount0 = ast int %x2 to int ; <int> [#uses=1℄%y1_lone = mul int %a2, %b2 ; <int> [#uses=1℄%T_0 = ast int %y1_lone to int ; <int> [#uses=3℄br label %B11B10: ; preds = %B11%y_sum1 = add int %y_sum2, %T_0 ; <int> [#uses=1℄%ount1 = sub int %ount2, 1 ; <int> [#uses=1℄br label %B11 15



B11: ; preds = %B10, %B8%y2 = phi int [ %y0, %B8 ℄, [ %T_0, %B10 ℄ ; <int> [#uses=1℄%y_sum2 = phi int [ %T_3, %B8 ℄, [ %y_sum1, %B10 ℄ ; <int> [#uses=2℄%ount2 = phi int [ %ount0, %B8 ℄, [ %ount1, %B10 ℄ ; <int> [#uses=2℄%B11ond = setge int %ount2, 0 ; <bool> [#uses=1℄br bool %B11ond, label %B10, label %B14B14: ; preds = %B11all int (sbyte*, ...)* %printf( sbyte* %LCSUM, int 14, int %y_sum2 ) ; <int>:7 [#uses=0℄br label %B16B9: ; preds = %B6br label %B12B12: ; preds = %B9%B12ond = seteq int %arg, 4 ; <bool> [#uses=1℄br bool %B12ond, label %B15, label %B17B15: ; preds = %B12%y3 = mul int %a2, %b2 ; <int> [#uses=3℄%T_2 = ast int %y3 to int ; <int> [#uses=1℄all int (sbyte*, ...)* %printf( sbyte* %LCY, int 15, int %y3 ) ; <int>:8 [#uses=0℄br label %B16B16: ; preds = %B15, %B14%y4 = phi int [ %y3, %B15 ℄, [ %y2, %B14 ℄ ; <int> [#uses=0℄%T_1 = phi int [ %T_2, %B15 ℄, [ %T_0, %B14 ℄ ; <int> [#uses=1℄all int (sbyte*, ...)* %printf( sbyte* %LCZ, int 16, int %T_1 ) ; <int>:9 [#uses=0℄br label %B18B17: ; preds = %B12%x3 = mul int %a2, %b2 ; <int> [#uses=1℄all int (sbyte*, ...)* %printf( sbyte* %LCX, int 17, int %x3 ) ; <int>:10 [#uses=0℄br label %B18B18: ; preds = %B17, %B16, %B7ret int 0}
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B Multiply Nested LoopsIn one pass of the algorithm, SSAPRE an �hoist� ode whih is loop invariant out of the innermost loop ofa loop nest to its proper plae. Our example is a program that has a triply nested loop whih has two loopinvariant instrutions in it.B.1 Before SSAPRE Pass%.LCASUM = internal global [ 17 x sbyte ℄ "B%d: A Sum = %d\0A\00" ; <[17 x sbyte*℄>%.LCBSUM = internal global [ 17 x sbyte ℄ "B%d: B Sum = %d\0A\00" ; <[17 x sbyte*℄>%.LCCSUM = internal global [ 17 x sbyte ℄ "B%d: C Sum = %d\0A\00" ; <[17 x sbyte*℄>implementation ; Funtions:delare int %printf(sbyte*, ...)int %main(int %arg, sbyte** %argv) {B1: ; No predeessors!%x = ast int 27 to float%y = ast int 3 to float%r = ast int 927 to float%i0 = ast int 10 to int%asum0 = ast int 0 to int%bsum0 = ast int 0 to int%sum0 = ast int 0 to int%LCASUM = getelementptr [17 x sbyte℄* %.LCASUM, long 0, long 0%LCBSUM = getelementptr [17 x sbyte℄* %.LCBSUM, long 0, long 0%LCCSUM = getelementptr [17 x sbyte℄* %.LCCSUM, long 0, long 0br label %B2B2:%i2 = phi int [ %i0, %B1 ℄, [ %i1, %B2_end ℄%asum2 = phi int [ %asum0, %B1 ℄, [ %asum1, %B2_end ℄%bsum2 = phi int [ %bsum0, %B1 ℄, [ %bsum1, %B2_end ℄%sum2 = phi int [ %sum0, %B1 ℄, [ %sum1, %B2_end ℄%j0 = ast int 10 to int%a = mul int %i2, 10%asum1 = add int %asum2, %abr label %B3B3:%j2 = phi int [ %j0, %B2 ℄, [ %j1, %B3_end ℄%bsum3 = phi int [ %bsum2, %B2 ℄, [ %bsum1, %B3_end ℄%sum3 = phi int [ %sum2, %B2 ℄, [ %sum1, %B3_end ℄%k0 = ast int 10 to int%b = mul int %j2, 10%bsum1 = add int %bsum3, %bbr label %B4B4:%k2 = phi int [ %k0, %B3 ℄, [ %k1, %B4 ℄%sum4 = phi int [ %sum3, %B3 ℄, [ %sum1, %B4 ℄%z = div float %x, %y ;; Loop invariant omputation: This should be;; moved to before the outer-most loop.17



;;%q = mul float %r, %z ;; Loop invariant omputation: This should;; also be moved to before the outer-most;; loop, but this doesn't our beause we;; do not keep a topologial sort of the;; ourrene sets.% = mul int %k2, 10%sum1 = add int %sum4, %%k1 = sub int %k2, 1%b4ond = setgt int %k1, 0br bool %b4ond, label %B4, label %B3_endB3_end:%j1 = sub int %j2, 1%b3ond = setgt int %j1, 0br bool %b3ond, label %B3, label %B2_endB2_end:%i1 = sub int %i2, 1%b2ond = setgt int %i1, 0br bool %b2ond, label %B2, label %B_exitB_exit:%q2 = mul float %q, %qall int (sbyte*, ...)* %printf( sbyte* %LCASUM, int 8, int %asum1 )all int (sbyte*, ...)* %printf( sbyte* %LCBSUM, int 8, int %bsum1 )all int (sbyte*, ...)* %printf( sbyte* %LCCSUM, int 8, int %sum1 )ret int 0}B.2 Expeted ResultsWe expet both loop invariant instrutions %z = div float %x, %y and %q = mul float %r, %z to beplaed in basi blok B1. However, as mentioned in the paper, this requires an ordering on the ourrenesets whih our implementation doesn't enfore. So, as shown in the next setion, only one instrution ismoved to basi blok B1.B.3 After SSAPRE Pass%.LCASUM = internal global [17 x sbyte℄ "B%d: A Sum = %d\0A\00" ; <[17 x sbyte℄*> [#uses=1℄%.LCBSUM = internal global [17 x sbyte℄ "B%d: B Sum = %d\0A\00" ; <[17 x sbyte℄*> [#uses=1℄%.LCCSUM = internal global [17 x sbyte℄ "B%d: C Sum = %d\0A\00" ; <[17 x sbyte℄*> [#uses=1℄implementation ; Funtions:delare int %printf(sbyte*, ...)int %main(int %arg, sbyte** %argv) {B1: ; No predeessors!%x = ast int 27 to float ; <float> [#uses=1℄%y = ast int 3 to float ; <float> [#uses=1℄%r = ast int 927 to float ; <float> [#uses=1℄%i0 = ast int 10 to int ; <int> [#uses=2℄%T_1 = ast int %i0 to int ; <int> [#uses=2℄18



%asum0 = ast int 0 to int ; <int> [#uses=2℄%T_2 = ast int %asum0 to int ; <int> [#uses=2℄%LCASUM = getelementptr [17 x sbyte℄* %.LCASUM, long 0, long 0 ; <sbyte*> [#uses=1℄%LCBSUM = getelementptr [17 x sbyte℄* %.LCBSUM, long 0, long 0 ; <sbyte*> [#uses=1℄%LCCSUM = getelementptr [17 x sbyte℄* %.LCCSUM, long 0, long 0 ; <sbyte*> [#uses=1℄%z_lone_lone_lone = div float %x, %y ; <float> [#uses=1℄%T_0 = ast float %z_lone_lone_lone to float ; <float> [#uses=1℄br label %B2B2: ; preds = %B2_end.B2_rit_edge, %B1%i2 = phi int [ %i0, %B1 ℄, [ %i1, %B2_end.B2_rit_edge ℄ ; <int> [#uses=2℄%asum2 = phi int [ %asum0, %B1 ℄, [ %asum1, %B2_end.B2_rit_edge ℄ ; <int> [#uses=1℄%bsum2 = phi int [ %T_2, %B1 ℄, [ %bsum1, %B2_end.B2_rit_edge ℄ ; <int> [#uses=1℄%sum2 = phi int [ %T_2, %B1 ℄, [ %sum1, %B2_end.B2_rit_edge ℄ ; <int> [#uses=1℄%a = mul int %i2, 10 ; <int> [#uses=1℄%asum1 = add int %asum2, %a ; <int> [#uses=2℄br label %B3B3: ; preds = %B3_end.B3_rit_edge, %B2%j2 = phi int [ %T_1, %B2 ℄, [ %j1, %B3_end.B3_rit_edge ℄ ; <int> [#uses=2℄%bsum3 = phi int [ %bsum2, %B2 ℄, [ %bsum1, %B3_end.B3_rit_edge ℄ ; <int> [#uses=1℄%sum3 = phi int [ %sum2, %B2 ℄, [ %sum1, %B3_end.B3_rit_edge ℄ ; <int> [#uses=1℄%b = mul int %j2, 10 ; <int> [#uses=1℄%bsum1 = add int %bsum3, %b ; <int> [#uses=3℄br label %B4B4: ; preds = %B4.B4_rit_edge, %B3%k2 = phi int [ %T_1, %B3 ℄, [ %k1, %B4.B4_rit_edge ℄ ; <int> [#uses=2℄%sum4 = phi int [ %sum3, %B3 ℄, [ %sum1, %B4.B4_rit_edge ℄ ; <int> [#uses=1℄%q = mul float %r, %T_0 ; <float> [#uses=2℄% = mul int %k2, 10 ; <int> [#uses=1℄%sum1 = add int %sum4, % ; <int> [#uses=4℄%k1 = sub int %k2, 1 ; <int> [#uses=2℄%b4ond = setgt int %k1, 0 ; <bool> [#uses=1℄br bool %b4ond, label %B4.B4_rit_edge, label %B3_endB4.B4_rit_edge: ; preds = %B4br label %B4B3_end: ; preds = %B4%j1 = sub int %j2, 1 ; <int> [#uses=2℄%b3ond = setgt int %j1, 0 ; <bool> [#uses=1℄br bool %b3ond, label %B3_end.B3_rit_edge, label %B2_endB3_end.B3_rit_edge: ; preds = %B3_endbr label %B3B2_end: ; preds = %B3_end%i1 = sub int %i2, 1 ; <int> [#uses=2℄%b2ond = setgt int %i1, 0 ; <bool> [#uses=1℄br bool %b2ond, label %B2_end.B2_rit_edge, label %B_exitB2_end.B2_rit_edge: ; preds = %B2_end 19



br label %B2B_exit: ; preds = %B2_end%q2 = mul float %q, %q ; <float> [#uses=0℄all int (sbyte*, ...)* %printf( sbyte* %LCASUM, int 8, int %asum1 ) ; <int>:0 [#uses=0℄all int (sbyte*, ...)* %printf( sbyte* %LCBSUM, int 8, int %bsum1 ) ; <int>:1 [#uses=0℄all int (sbyte*, ...)* %printf( sbyte* %LCCSUM, int 8, int %sum1 ) ; <int>:2 [#uses=0℄ret int 0}
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C The Role of LaterIn the paper, they disuss the role of the later prediate on a � node. In essene, a � node an satisfydown_safe and an_be_avail but if it also satis�es later, then we won't use that � to insert expressions.Doing so would not eliminate any redundanies and would unneessarily extend the live range of the tem-porary variable.[1℄ The example given here models the CFG given in the paper ([1℄ Fig. 9).C.1 Before SSAPRE Passimplementation ; Funtions:int %main(int %arg, sbyte** %argv) {BBegin:%a1 = ast int 37 to int%b1 = ast int 27 to int%ond = setle int %arg, 2br bool %ond, label %B1, label %B0B0:%bb0ond = setle int %arg, 3br bool %bb0ond, label %B3, label %B2B1:%x0 = add int %a1, %b1br label %B3B2:;; If later were false for the PHI node in B5, we would expet an;; inserted omputation of a + b here.%a2 = ast int 927 to intbr label %B5B3:;; Expet PHI node here for the expr in B1%bb3ond = seteq int %arg, 2br bool %bb3ond, label %BExit, label %B4B4:;; If later were false for the PHI node in B5, we would expet an;; inserted omputation of a + b here.br label %B5B5:;; Expet PHI node here for the expr in B1%a3 = phi int [ %a1, %B4 ℄, [ %a2, %B2 ℄, [ %a3, %B5 ℄%bb4ond = seteq int %arg, 0br bool %bb4ond, label %B6, label %B5B6:%x1 = add int %a3, %b1br label %BExitBExit:ret int 0 21



}C.2 Expeted ResultsWe expet none of the the add int %a, %b expressions to be moved sine the � in B3 isn't down_safe andthe � in B5 satis�es later. As shown in the next setion, that is what ours.C.3 After SSAPRE Passimplementation ; Funtions:int %main(int %arg, sbyte** %argv) {BBegin: ; No predeessors!%a1 = ast int 37 to int ; <int> [#uses=2℄%b1 = ast int 27 to int ; <int> [#uses=2℄%ond = setle int %arg, 2 ; <bool> [#uses=1℄br bool %ond, label %B1, label %B0B0: ; preds = %BBegin%bb0ond = setle int %arg, 3 ; <bool> [#uses=1℄br bool %bb0ond, label %B0.B3_rit_edge, label %B2B0.B3_rit_edge: ; preds = %B0br label %B3B1: ; preds = %BBegin%x0 = add int %a1, %b1 ; <int> [#uses=0℄br label %B3B2: ; preds = %B0%a2 = ast int 927 to int ; <int> [#uses=1℄%bb4ond_lone1 = seteq int %arg, 0 ; <bool> [#uses=1℄%T_2 = ast bool %bb4ond_lone1 to bool ; <bool> [#uses=1℄br label %B5B3: ; preds = %B1, %B0.B3_rit_edge%bb3ond = seteq int %arg, 2 ; <bool> [#uses=1℄br bool %bb3ond, label %B3.BExit_rit_edge, label %B4B3.BExit_rit_edge: ; preds = %B3br label %BExitB4: ; preds = %B3%bb4ond_lone = seteq int %arg, 0 ; <bool> [#uses=1℄%T_0 = ast bool %bb4ond_lone to bool ; <bool> [#uses=1℄br label %B5B5: ; preds = %B5.B5_rit_edge, %B4, %B2%a3 = phi int [ %a1, %B4 ℄, [ %a2, %B2 ℄, [ %a3, %B5.B5_rit_edge ℄ ; <int> [#uses=2℄%T_1 = phi bool [ %T_0, %B4 ℄, [ %T_2, %B2 ℄, [ %T_1, %B5.B5_rit_edge ℄ ; <bool> [#uses=2℄br bool %T_1, label %B6, label %B5.B5_rit_edgeB5.B5_rit_edge: ; preds = %B5br label %B5 22



B6: ; preds = %B5%x1 = add int %a3, %b1 ; <int> [#uses=0℄br label %BExitBExit: ; preds = %B6, %B3.BExit_rit_edgeret int 0}
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