SPEDI: Static Patch Extraction and Dynamic Insertion

Brian Fahs
CS 497 yyz Final Project Report

1 Introduction

As every modern computer user has experienced, software updates and upgrades
frequently require programs and sometimes the entire operating system to be restarted.
This can be a painful and annoying experience. What if this common annoyance could
be avoided completely or at least significantly reduced? Imagine only rebooting your
system when you wanted to shut your computer down or only closing an application
when you wanted — rather than when an update occurs. The purpose of this project is to
investigate the potential of performing dynamic patching of executables and create a
patching tool capable of automatically generating patches and applying them to
applications that are already running. This project should answer questions like: How
can dynamic updating be performed? What type of analysis is required? Can this analysis
be effectively automated? What can be updated in the running executable (e.g.,
algorithms, organization, data, etc.)? Previous works have also investigated similar topics
such as the proper way to patch code into the executable, but have not focused on the
actual creation of patch code and whether or not modifications are indeed “patchable”.
This work will be focused more on the determination of criteria for “patchability” as well
as the automated creation and application of patches to running programs. The final
result of this project is a set of guidelines and pitfalls for dynamic updating and an
implementation of a dynamic updating utility.

Section 2 discusses the background upon which the project was built. Section 3
discusses in more detail the idea and purpose of the project. Section 4 discusses the
design and implementation of the project. Section 5 discusses the findings of the project
and the experimental results. The related work to the project is covered in Section 6 and
the limitations and conclusions are in Section 7.

2 Background

This project is going to be built on top of the LLVM compiler and runtime
framework. The LLVM compiler framework is a complete compilation framework with
a gcc 3.4 frontend and a custom backend and intermediate program representation. The
executables produced by LLVM are composed of bytecodes. The bytecode format is a
form of static single assignment (SSA) that can be read in by the compiler into its
intermediate representation. It contains high-level constructs like symbol tables, variable
types, global variables, global constants, functions, basic blocks, etc. These bytecode
programs can be converted to an executable for a target machine or run inside lli, the
LLVM bytecode interpreter/JIT.



3 Project Idea

This project is primarily comprised of two subsystems: dynamic program
modification and program analysis. Dynamic program modification has been thoroughly
researched over the last few years and there are a few different solutions. From a
macroscopic level, dynamic program modification is the set of techniques required to
safely modify a program while it is running. The dynamic program modifier employed in
this project is a combination of some utilities already available in LLVM and some
custom additions I made to the interpreter/JIT. This tool will be the medium used to
apply patches to a dynamically running executable.

The other subsystem and primary focus of the project is program analysis, which
is responsible for determining the changes between two different versions of a program,
determining whether those changes can be safely applied to a running executable, and
creating patches containing all of the necessary information for inserting the modified
code. Due to the lack of previous work in this area, a major goal of the project is to
produce a list of rules instructing what program modifications can be applied to running
executables. The obvious other primary goal is to have a functional program extractor
that is capable of automatically analyzing two versions of a program and creating
dynamic program patches that can be applied through the dynamic program modifier.

The primary contribution of this work is the investigation of the potential for
dynamically applying changes from later versions of executables to earlier versions
without requiring the applications to restart. Through this investigation a set of
guidelines will be developed to allow an automated tool to make correct decisions about
which program modifications can be patched. In terms of tangible contributions, this
project will produce a dynamic patching utility to automatically extract the patch code by
performing a comparison between the original program and the final program. This
project is not just another dynamic program modifier, but rather it is a tool set that will
allow end users to create patches and apply them to running programs with little end user
effort.

4 Design and Implementation

As previously stated, this project was designed on top of the LLVM compiler
framework. This section is devoted to the description of those modifications.

4.1 Analysis for patching

When this project began, it was not clear whether patching would require source-
level analysis, executable binary analysis, or compiler intermediate representation (IR)
analysis. The first choice was deciding on what level to perform the analysis. Simple
source-level analysis has the problems of not seeing the entire program at once. If files
are processed one at a time, source level analysis suffers from the movement of function
and definitions both within files and between files. Additionally source-level analysis
suffers from ambiguities in definitions that can occur in the source language and it is
difficult to create a binary patch from the source-level modifications. On the other hand,
executable binary analysis makes patch creation trivial, but it can lack source-level



information about types, global variables, and function names that will be required to
perform the proper analysis. A compiler’s IR of the entire executable bridges the gap
between these two by providing an entire view of the executable that masks any aesthetic
changes to the program but also provides high-level information about the executable
such as types, global variables, and function names. Additionally, it is trivial to
determine the patches required on the program from the compiler’s IR. In this project, I
chose to use the LLVM compiler framework because of its ease of use and its ability to
store an executable in its IR form. The next section describes the checks that were
performed on the LLVM IR for comparing two programs.

The modifications for the program analysis portion of the project involved
creating a set of classes to compare and track the differences between two different
programs. These classes perform several tasks where each task is used to determine not
only the patch, but also whether the program can be patched dynamically. Table 1 lists
the checks that are performed by these classes and Table 2 lists all of the situations where
the analysis will determine that patching is not possible. In Table 2, the reason for the
limitation as well as an indication as to whether this is a general limitation on patching or
whether it is a limitation of the SPEDI framework.

Consistent global variable types

Consistent global variable initial values

Consistent global variable definitions (i.e., internal or external definition)

Additional global variables

Consistent function definitions (i.e., internal or external definition)

Additional function declarations

Function modifications

Table 1. Checks performed in the analysis phase of patching.

Symptom Reason General
Limitation

Modification of the type of a global If the type of the global variable Yes
variable is modified, then it is unclear

what the result on execution

would be
Modification of the initial value of a Because the program will be at Yes
non-immutable global some unknown point in

execution, it is not possible to
modify the initial value of some

global variable.
Addition of a non-immutable global Similar to the modification of the Yes
variable initial value of the global, it is

unclear what state that variable
would be in during the middle of

execution.
Movement of a variable from internal to | If the variable is moved to or No
external or vice versa from a shared library, it is

difficult to apply this




dynamically and even determine
if the variable’s initial value was

modified.
Addition of external function call This is a limitation of this project. No
reference To perform this, the project

would have to invoke the
dynamic loader

Identical executables Nothing required Yes

Table 2. Cases where patching is determined not possible during the analysis phase.
4.2 Dynamic updating

The dynamic updating portion of the project was a series of additions made to 1li,
the LLVM interpreter/JIT. There are two requirements to perform the updates:
determining whether the patch can be applied, applying the patch to the executable.

Determining whether the patch can be applied requires information about the
current state of the executable because the patch cannot be applied if a function that is
going to be modified is currently in the call stack. The limitation exists because it is not
clear what will happen if new versions and old versions of functions interact. This is a
conservative limitation imposed by the SPEDI framework. A more thorough analysis
could allow modifications to still occur under certain circumstances. Determining the
state of the current program requires reading the program stack for the running
executable. Because 1li incrementally compiles and runs the program, the symbol
information for the executable does not exist, so I added functionality to look up the
JIT’d function information. An additional requirement placed on dynamic updating by
the SPEDI framework is that the patch cannot be applied if it was started while 1li was in
the process of compiling one of the source programs (This is a rare case and should not
be a problem in general).

Once that it is determined that the executable can be patched, all that remains is to
add/replace and recompile the functions for the executable as well as add/modify any
global variables. This required some extra functionality to map all of the information
(global variables, functions, etc.) from the new executable into the currently running
executable. Then all modifications are inserted or copied from the new executable to the
currently running version. Then all functions modified or inserted were recompiled and
the entry points of the original functions were redirected to the entry points of the new
functions.

In this process there a few limitations that could result in the patch not being
applied. These reasons are summarized in Table 3. As with Table 2, Table 3 presents the
motivation behind the limitation as well as whether the limitation is applicable to
dynamic updating in general or if it is merely a limitation of the SPEDI framework. For
dynamic updating a failure does not necessarily mean that the program cannot be patched
at all. It means that patching should be attempted again at a different time. An
improvement over this implementation would attempt to patch at multiple different points
or would find a point in the program where it can be updated.




Symptom Reason General
Limitation
Cannot patch because modified Since function entry points are No
function is in call stack replaced, if the function is in the call
stack and it is modified, when it
returns to the function, it will return
to the original. It is not clear what
effect this will have on the program.
Cannot patch because JIT is The JIT for 1li is not re-entrant No
currently JIT ing
Modify all or none Only updating a portion of the Yes
changes from the new executable
could result in undefined behavior

Table 3. Cases where patching is deemed not possible during the dynamic update phase.

5 Evaluation and Results

The objective of this project was two-fold: developing a dynamic updating utility
and developing guidelines and evaluating the effectiveness of dynamic updating in
general. To this end, we evaluate in this section (1) the functionality of the SPEDI
framework and (2) the guidelines and limitations of dynamic updating.

5.1 Functionality of SPEDI

To evaluate the functionality of the SPEDI framework, I developed 16 specific
test cases to test the vulnerabilities of the dynamic patching utility. Many of these cases
stress multiple different features simultaneously. These test cases, their descriptions, and
results are displayed in Table 4. The results in the table are the expected outcome of the
test. All tests performed as expected in the framework (i.e., SPEDI works!).

Test case Description Result
Function_interface 1 Add and use a new argument to the | Succeeds
function
Function_interface 2 Change the return value and use the | Succeeds
result
Algorithm_1 Modify a for-loop in the function Succeeds
Modify_main Modify the function “main” Cannot be applied
Test_identical Update identical executable No need to apply
Global_structure_1 Test modify global structure that is Succeeds
not live at the time of modification
Global_structure_2 Test modify global structure that is | Cannot be patched
live at the time of modification
Global_variable 1 Test modify global variable’s initial | Cannot be patched
value




Global_structure_3 Add a global structure Succeeds
Global_structure_4 Add to a global structure that is not | Succeeds
live at the time of modification
Global_structure_5 Add to a global structure that is live | Cannot be patched
at the time of modification
Insert_new_function Add a whole new function and call Succeeds
it
Global_variable 2 Add a global variable Cannot be patched
Global_constant_1 Add a global constant Succeeds
Global_constant_2 Modify a global constant Succeeds
Fix_segv Fix a segmentation fault in a Succeeds

program

Table 4. Test cases for the SPEDI framework.

5.2 General guidelines and limitations of dynamic updating

As mentioned previously, one of the major contributions of this project is an
evaluation of the limitations of dynamic patching and a set of guidelines for a dynamic
patching tool. These findings are summarized in Table 5. Many of these findings have
already been discussed, but the most important finding has not. The most important
finding of this project is that dynamic updating of software that is currently running
cannot be entirely automated in the general case. The reason for this is because high-
level semantics that may only be understood by the programmer (e.g., current state stored
as integers, timing of events, etc.) are difficult if not impossible for a compiler or patch
extraction tool to understand without explicit help or annotations from the programmer.
The fact is that if an adversary wanted to make dynamic patching succeed but cause the
program to fail or perform unexpectedly, they can always succeed in doing that. As long
as the high-level semantics of the program are not changed, dynamic updating should be
able to succeed. Even though these limitations seem rather severe, it is my contention
that many of the bug fixes and patches that are delivered over the internet are probably
for minor changes such as buffer overflow detection. In most of these cases, the SPEDI
type of approach will work correctly, but it will need supervision from the programmer to
determine if high-level semantics have indeed changed.

Question Solution
What type of analysis should be used? IR-level
Can dynamic patching be automated? Not entirely
Can algorithm updates be made? Yes

Can organizational changes be made? Yes

Can global data be updated?

Constants only

Can global structures be updated?

patching

Only if they are not live at the point of

Can function call interfaces change? Yes

Table 5: Guidelines and limitations in dynamic patching.




6 Related Work

There are four bodies of work that are similar in nature to this project: runtime
code patching, escape analysis, online update, and code similarity analysis.

Runtime code patching [1,2,3,4] is the study of the complicated process of
performing the actual insertion of code into running executables. Some of the problems
that are encountered while trying to do this are (1) location — where should the
instrumented code be placed, (2) free registers — what registers are free for the application
to use, (3) redirection — how to redirect the program to the modified version of the code,
and (4) self-deadlock — where the insertion of code into a multi-threaded program causes
a deadlock within the program to occur.

In the literature, there are two different approaches to doing this: (1) interpretation
and (2) using the debugging interface. The main differences are in the way that
redirection is accomplished. In the interpretation approach, the running executable is run
under an interpreter where it can be controlled and, therefore, redirection is relatively
straightforward. The other approach uses the debugger interface to insert code into the
executable and overwrite portions of the original executable to force it to enter the newly
added code.

Another body of research that overlaps with this project is escape analysis [5,6].
According to [5], escape analysis is a technique to determine whether the lifetime of a
variable exceeds its static scope or not. This is typically used to determine allocation
policies for interpreted languages such as Objective Camel and Java. For these cases, it
is beneficial in determining whether an allocation can come from the stack or whether it
must come from the heap. The performance benefit of allocating data from the stack is
that it will be automatically garbage collected when the function returns where as
allocations from the heap must be explicitly garbage collected.

The third work that bears a significant resemblance to the work presented here is
online update. Dependable systems upgrade [7] focuses on upgrading real time systems
without having to bring the system down. The approach involves a new software as well
as hardware architecture. All of the upgrades are performed through analytically
redundant controllers. This work differs significantly from this project because the focus
for this project is on upgrading existing executables without requiring any modifications
to the software or hardware architecture upon which they run. Additionally, [7] focused
primarily on online replacement whereas this work focuses more on determining the
minimal changes between two versions of a program and dynamically applying those
changes to the new system. In a somewhat similar approach, Maté [8] defines an
architecture where programs can be updated on the fly for sensor devices over a wireless
ad-hoc sensor network. This work too completely replaces the old program.

The last major body of work that resembles this project is code similarity analysis
[9]. By the title, code similarity analysis would appear to be the solution to the program
analysis proposed for this project. On the contrary, program analysis typically has the
primary goal of determining if two different programs are similar enough to assume that
they came from a single source. This is very useful in detecting cheating in university
programming classes. However, the program analysis proposed in this work differs
significantly in that it heavily leverages on the assumption that the two programs being
analyzed are the same. Furthermore, the goals of the two analyses are very different.



The purpose of this project’s analysis is to determine what changed and whether those
changes can successfully be applied to a running executable.

7 Limitations and Conclusions

In addition to the limitations previously mentioned, there were several other
minor limitations. The project does not deal with the additional complexity added from
multi-threaded software, self-modifying code (SMC), or self-referential code (SRC). To
handle multi-threaded software, no additional modifications should be required to the
analysis phase, but the dynamic update utility would need a method to halt all threads of
the application and ensure that none of the application threads are currently executing in
any of the functions that are to be updated. For SMC/SRC, it is important for the
dynamic update tool to be able to accurately determine the existence of such cases and
avoid patching in such cases.

Another limitation of this project is in the analysis portion of the project. For
simplicity, a conservative approach to patching was used. For example, any modification
to the initial value of a global variable is not allowed. This is conservative, but there are
cases where the programmer might want to turn on or off some functionality by
dynamically updating the initial value of a variable that is only read. For these reasons, it
may be beneficial to allow for programmer interaction to override certain analysis failure
situations (e.g., global variable initial value changes) in cases where the programmer
knows what they are doing.

In conclusion, the purpose of this project was to explore the limitations of
dynamic software updating and implement a version of a dynamic update utility. Both of
these have been accomplished. Through this project, all of the original questions in
regards to dynamic updating have been answered. Can algorithm changes be applied?
Yes. Can organizational changes be applied? Yes. Can function call interfaces (return
values and parameters) be updated? Yes. Can data structures be modified? If there are
provably no live variables of that data structure at the time of updating, then yes
otherwise no. What type of analysis is required? IR-level. Can global data be updated?
Immutable values are the only global variables that can be updated. Can dynamic
patching be automated? Not really. Because of ambiguities in software programming, it
is very difficult to entirely automate the process. As a result of this last finding, it will be
very difficult to deploy a general tool that can guarantee that a dynamic update will be
safe. However, it is possible that many of the program patches (updates, security patches,
etc.) have isolated effects and do not modify the high-level semantics of the program. In
these situations, dynamic updating can be a useful and valid tool.



References

[1] Z. Xu, B. P. Miller, and O. Naim. Dynamic Instrumentation of Threaded
Applications, In 7th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, Atlanta, Georgia, May 1999.

[2] A. Tamches and B. P. Miller. Fine-Grained Dynamic Instrumentation of Commodity
Operating System Kernels, In Third Symposium on Operating Systems Design and
Implementation (OSDI), New Orleans, February 1999.

[3] V. Bala, E. Duesterwald, S. Banerjia. Dynamo: A Transparent Dynamic Optimization
System, In Proceedings of the ACM SIGPLAN '00 Conference on Programming
Language Design and Implementation, 2000, pp. 1-12.
http://citeseer.nj.nec.com/bala00dynamo.html

[4] D. Bruening, T. Garnett, and S. Amarasinghe. An infrastructure for adaptive dynamic
optimization. In /st International Symposium on Code Generation and Optimization
(CGO-03), March 2003. http://citeseer.nj.nec.com/bruening03infrastructure.html

[5] B. Blanchet. Escape Analysis: Correctness, Proof, Implementation and Experimental
Results, In Proceedings of the 25th Annual ACM Symposium on Principles of
Programming Languages, pages 25-37, San Diego, CA, January 1998.
http://citeseer.nj.nec.com/blanchet98escape.html

[6] A. Salcianu, M. Rinard. Pointer and Escape Analysis for Multithreaded Programs. In
Proceedings of the Eighth ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming. Snowbird, Utah, June 2001.

http://citeseer.nj.nec.com/salcianu0 1 pointer.html

[7] L. Sha. Dependable system upgrades . In Proceedings of IEEE Real Time System
Symposium, 1998.

[8] P. Levis, D. Culler. Mate: A Tiny Virtual Machine for Sensor Networks. In
Proceedings for the Tenth International Conference on Architectural Support for
Programming Languages and Operating Systems, San Jose, CA, October 2002.

[9] A. Aiken, http://www.cs.berkeley.edu/~aiken/moss.html



