
Improvements to Linear Scan register allocation

Alkis Evlogimenos (alkis)

April 1, 2004

1 Abstract

Linear scan register allocation is a fast global register allocation first presented
in [PS99] as an alternative to the more widely used graph coloring approach.
In this paper, I apply the linear scan register allocation algorithm in a system
with SSA form and show how to improve the algorithm by taking advantage of
lifetime holes and memory operands, and also eliminate the need for reserving
registers for spill code.

2 Introduction

Linear scan register allocation was first introduced in [PS99] as a fast alternative
to graph coloring register allocation. Later a slower variant of linear scan that
produced better code, second-change bin backing was proposed in [THS98].
In another paper [MP02] a variation of linear scan was proposed that takes
advantage of lifetime holes and handles preallocated registers.

In this paper, I further refine the linear scan algorithm. First, I introduce
the concept of instruction slots to generalize the representation of live intervals
in the context of lifetime holes and spill code and also provide an easy way to
update this information incrementally. This new concept is described in more
detail in Section 3.1. Then, starting from the lifetime hole implementation in
[MP02], I add spill code fusion in memory operands when the target instruction
set architecture supports it, as I further describe in Section 3.4. Finally, in
Section 3.3, I show how to eliminate the need of reserved registers, increasing
opportunities for register allocation and reducing spill code, especially in register
poor ISAs.

Experimental evaluation of the above enhancements shows that they not
only increase the quality of the generated code but also decrease the running
time of the register allocator, as shown in more detail in Section 4.

1

3 Refinements to Linear Scan

3.1 Live Intervals

Central to linear scan register allocation is the notion of a live interval. In
[PS99] a live interval is defined as in interval [i, j] where 1 ≤ i ≤ j ≤ N for
which a variable is live in some ordering 1 . . . N of the instructions. In this
implementation I introduce the concept of instruction slots in order to handle
spill code and reuse last use operands for allocating def operands in a generic
way. Furthermore, live intervals are composed out of live ranges and thus can
represent lifetime holes.

Each instruction has four slots. A load slot, a use slot, a def slot and a
store slot. The use and def slots model the way machine instructions logically
use their operands: all operands are first read, computation is performed and
finally operands are written back in the register file. By modeling this in the live
interval representation, adjacent live intervals that do not overlap, can reuse a
register allocated to a last use for an instruction def. For example for this code:

0 A = ...
4 B = ...
8 C = A + B ;; last use of A

we will have the following intervals: A = [3, 11), B = [7, x), and C = [11, y).
Because of the different slots used for use and def the fact that the live ranges of
A and C do not overlap can be naturally expressed in the interval representation
without requiring further information. The original linear scan algorithm as
presented in [PS99] does not have this problem since the definition is the start
and last use is the end of the interval with no holes in between. Since this
implementation takes advantage of lifetime holes, there is the need to distinguish
between a last use and a break in a temporary’s lifetime.

The load and store slots are used for handling spill code. Because this
implementation does not reserve registers for spilling temporaries, there is the
need to encode spill code information in the live interval. Adding the spill code
incrementally will cause a renumbering of the instructions for the live intervals
to be correct, which is an expensive operation. Instead, the live interval for the
spilled temporary is updated to take into account the worst case spill code: a
load before each use and a store after each def . After updating, the live interval
can be used by the unmodified linear scan algorithm to allocate a spill register to
the temporary. The need for the load and store slots is evident in the following
example:

0 A = B + ...
4 C = A + D

Assuming all temporaries will be spilled we have the following live intervals:
A = [3, 4), [4, 5) = [3, 5), B = [0, 2), C = [7, x), and D = [4, 6). Because the live
intervals of A and D overlap, two spill registers are needed to allocate the code

2

fragment. Allocating B and C is trivial since their live intervals do not overlap
with any other so we can use any of the two registers.

To build live intervals information, I use the live variable analysis provided
by the LLVM compilation framework [LA04]. The pseudo-code for building live
intervals using live variable information is provided in Figure 1.

1 for each basic block B in dfs order do
2 for each instruction I in B
3 let V <- register defined by I
4 let INT <- interval for register V
5 let I.n <- index of instruction
6

7 if (V is live through B)
8 add range [DEF-SLOT(I.n), B.end+1) to INT
9 else

10 let B.kill[V].n <- index of instruction that kills V
11 add range [DEF-SLOT(I.n), USE-SLOT(B.kill[V].n))
12

13 for all basic blocks B’ that V is live through
14 add range [B’.start, B’.end+1) to INT
15

16 for all basic blocks B’’ that V is killed
17 let I’ <- instruction in B’’ that kills V
18 add range [B’’.start, USE-SLOT(I’.n)) to INT
19

Figure 1: COMPUTE-INTERVALS algorithm.

3.2 Register move coalescing

After live interval computation, register move coalescing is performed in a single
pass over the instruction stream. The approach is similar to the one described
in [MP02] in the sense that a union-find algorithm is used. The main differ-
ence is that joining live intervals is less aggressive since I only join on register
moves whereas in [MP02] any two live intervals that do not overlap and are not
preallocated are joined.

For every register move, the source and destination operands are observed.
If the live intervals of the two operands do not overlap, and at least one of
the operands is not preallocated, the live intervals are joined. When joining
a union-find data structure is used, where both operands get a representative.
In the case one of them is preallocated, the representative is that fixed register
otherwise it is the temporary with the live interval starting earlier. I chose the
temporary with the live interval starting earlier so that the ordering of the live
intervals is preserved.

3

I opted to join only on register moves as this has the clear advantage of
eliminating the move instruction. Joining any two intervals that do not overlap
increases the number of overlapping intervals as the new joined interval overlaps
the union of the overlapping intervals of the two joined intervals. Although I
have not experimentally verified this, I expect the number of spills to increase
with the more aggressive coalescing, as a result of increased register pressure.
The pseudo-code for joining live intervals is shown in Figure 2.

1 for each basic block B in dfs order do
2 for each instruction I in B
3 if I is a move instruction
4 let DST be the destination register
5 let SRC be the source register
6 let DSTINT be the interval of DST
7 let SRCINT be the interval of SRC
8

9 if DSTINT does not overlap SRCINT
10 join DSTINT with SRCINT

Figure 2: JOIN-INTERVALS algorithm.

3.3 Elimination of reserved registers

In both the original [PS99] and improved [MP02] linear scan algorithm there is
no mention of how spill code is allocated. From their pseudo-code and algorithm
description one can infer that registers are reserved for this purpose. Reserving
2 registers when allocating for a register poor ISA like the x86, causes an almost
30% loss of the available register file (2 out of 7 available registers). In order
to maximize performance, especially for register poor architectures, I devised a
way to reserve no registers for spill code. Instead when spilling, the algorithm
backtracks, updates the spilled temporary’s live interval and restarts. This
makes the algorithm super-linear with a worst case quadratic complexity as it
can potentially backtrack on every allocation attempt. Nevertheless, in practice
the running time is still linear.

The relevant changes to the linear scan algorithm as refined in [MP02] are
shown in the pseudo-code in Figure 4. When there are no more free registers (line
22), the temporary that overlaps with the current interval and has the minimum
spill weight is spilled. It is worth noting that the current interval is a spill
candidate as well. In the case the current interval is spilled no rollback is needed.
Otherwise, all allocations need to be undone as shown in Figure 6. Intervals
are popped out of the handled set and have their allocations undone until the
start of the spilled interval. By performing the rollback, spilled temporaries are
allocated in the context of linear scan and as such reserving registers for spill
code is no longer required.

4

3.4 Fusing spill code into instructions

Some architectures, like the x86, allow memory instruction operands. In this
implementation, I show how to take advantage of this feature. When updat-
ing the live interval of a spilled temporary, live ranges are only added when
the memory reference cannot be fused in the instruction. For example in the
following code sequence, assuming A will be spilled:

0 mov A, B
4 add C, B
8 add B, A

Before spilling A will have the following live interval: [3, 11). After spilling
without fusion the code sequence will remain the same but the new live interval
will be: [3, 5), [8, 10).

When spill code fusion is used and assuming only the first reference can be
fused the code sequence will be modified to:

0 mov [stack slot], B
4 add C, B
8 add B, A

and A will have its live interval updated to: [8, 10). If only the last reference
can be fused, the code sequence will instead be modified to:

0 mov A, B
4 add C, B
8 add B, [stack slot]

and A’s live interval will obviously be just [3, 5). In the case both references
are fused the resulting live interval will be empty and the code will have no
references to the temporary A.

Although spill code fusion is more heavily used in the CISC ISAs, it is still
useful for RISC ISAs as well. For example, register moves can have the source
operand fused into a load or the destination operand fused into a store.

An interesting consequence of fusing memory operands into instructions is
that it slows down backtracking. When a temporary is spilled, its updated live
interval is pushed back into the unhandled set. Recall that the unhandled set
contains the live intervals to be allocated in increasing start point. Since memory
operand fusion can change the start point of a live interval (as is the case in the
code sequence where only the move is fused), the spilled live interval cannot sim-
ply be inserted in the front of the unhandled set. In the current implementation
the unhandled is scanned until a suitable point is found. This can be optimized
to a binary search in the set, but it will still be slower than the constant time
insertion needed when a live interval’s start point never changes. Nevertheless,
the reduced register pressure because of the use of memory operands on the x86,
results in less spills and thus less rollbacks which in turn improves running time
as shown in Figure 7.

5

4 Experimental results

For experimental results I used the SPEC suite of programs, compiled with
the x86 back-end of the LLVM compiler infrastructure on an AMD Athlon XP
2400+ CPU. The register allocators used are:

• local: a local register allocator. It spills all temporaries on basic block
boundaries and uses a simple last-use heuristic when spilling in the middle
of a basic block.

• ls: a basic version of the linear scan register allocator, with lifetime holes
and no reserved registers. This in not the original linear scan, since it uses
backtracking to eliminate the need for reserved registers.

• ls+memop: same as the ls register allocator with the addition of spill code
fusion in memory operands,

• ls+join: same as the ls register allocator with the addition of register move
coalescing (join-intervals).

• ls+join+memop: same as the ls register allocator with the addition of
both register move coalescing and spill code fusion in memory operands.

4.1 Register move coalescing

The internal representation of LLVM is in SSA form. After transforming the
IR into machine code, SSA is preserved with the φ pseudo instructions. These
pseudo instructions are eliminated before register allocation. Due to the simplic-
ity of the algorithm used during φ-elimination, an excessive amount of register
moves is generated. The JOIN -INTERV ALS pass as described in Section 3.2
attempts to rectify this by joining live intervals that do not overlap.

As shown in Table 1, the JOIN -INTERV ALS pass manages to successfully
eliminate on average over 35% of the original live intervals, from programs in
the SPEC2000 suite.

The reduction in the number of live intervals ends up speeding up compi-
lation as shown in Figure 7. It also reduces the instruction count as a large
number of register moves are eliminated as shown in Figure 8. On the other
hand joining live ranges increases register pressure and as such may cause more
spills. This is true for a few benchmarks, namely 255.vortex and 300.twolf in
which the number of loads/stores added is greater when the ls+join is used in
Figure 9. Even in this cases, the end result is an overall reduction in instruction
counts.

4.2 Fusing spill code into instructions

By fusing spill code into instructions, register pressure is reduced and as a result
better allocation is possible. Looking at Figure 10 we can see that using spill

6

Benchmark Original Joined Ratio
177.mesa 82058 56039 0.68
179.art 2430 1637 0.67
183.equake 2597 1940 0.75
188.ammp 19460 14059 0.72
164.gzip 7939 4678 0.59
175.vpr 26138 15877 0.61
176.gcc 273574 151894 0.56
181.mcf 2065 1331 0.64
186.crafty 46567 27110 0.58
197.parser 21810 13100 0.60
252.eon 102570 80503 0.78
253.perlbmk 139692 89065 0.64
254.gap 115386 68589 0.59
255.vortex 65644 46026 0.70
256.bzip2 5211 3046 0.58
300.twolf 43959 29381 0.67
Total 957100 604275 0.63

Table 1: Live interval counts before and after register move coalescing.

code fusion often results in an increase in memory references. This is because
code that used to be like the following before allocation:

0 add %R3, %R1
1 sub %R4, %R1

becomes:

0 mov %R1, [stack slot]
1 add %R3, %R1
2 sub %R4, %R1

when fusion is not used and:

0 add %R3, [stack slot]
1 sub %R4, [stack slot]

when fusion is used. The code using memory operands has more memory
references but no explicit loads. Because the cache of modern x86 variants is
almost as fast as registers and all subsequent references of the spilled temporary
are guaranteed to be in the L1 cache, the performance of the fused code is
expected to be similar to that of the non-fused code.

7

In Figure 9, we see a dramatic reduction of explicit loads/stores. This is
both due to a reduction in register spills because of reduced register pressure
and also a direct reduction of loads/stores because of spill code fusion.

Going back to Figure 7 we can see that compilation times are also improved
even though spill code fusion slows down backtracking. This is mainly due
to less backtracking because of decreased spilling. Also when the temporary
corresponding to the current interval is spilled and all its references are fused,
its live interval is removed and no backtracking is necessary.

4.3 Runtime Performance

The local register allocator is compared to ls+join+memop register allocator in
both static and dynamic compilation in Table 2. For static compilation, the
linear scan register allocator is clearly a better choice. Running time improve-
ments range between 9% to 58%. For two benchmarks the linear scan allocator
performs worse than the local allocator. I haven’t yet identified the source of
this slowdown.

For dynamic compilation, the running time performance is more varied. Be-
cause of the additional overhead of linear scan compared to the local allocator it
is more often the case that linear scan performs worse than the local allocator.
For programs that run for a non-trivial amount of time the cost of register allo-
cation is amortized and thus linear scan outperforms the local register allocator.
Thus, in the context of a JIT it may be a better choice to first allocate with a
very fast register allocator like the local one, and identify hot functions which
will later be reallocated by the slower but better linear scan register allocator.

5 Related Work

Linear scan register allocation was first introduced in [PEK97] and further doc-
umented in [PS99]. This initial incantation of the algorithm is extremely simple
mainly because the quality of the code was good enough for the application and
the authors concentrated more in compile time performance rather than run
time performance. Consequently, lifetime holes are not exploited and there is
no attempt to coalesce register moves. Also there is little information on how
registers are allocated for spill code. The pseudo-code provided suggests that
enough registers are reserved for use when spilling, so this makes it a relatively
bad allocator for register poor architectures.

Second-chance bin-packing was proposed as an improvement to linear scan in
[THS98]. As in this implementation second-chance bin packing takes advantages
of lifetime holes, but it does not attempt to backtrack and reallocate after a spill.
Instead, the live interval is split and the temporary is allowed to live in different
registers in its lifetime. Because of this, their implementation needs to keep
extra bookkeeping information on where a spilled temporary lives during its
lifetime. In addition to the extra information, compensation code needs to be
added on CFG edges so that allocation assumptions are maintained.

8

Benchmark Static JIT
local ls Ratio local ls Ratio

177.mesa 2.776 2.744 1.01 6.121 6.023 1.01
179.art 5.663 4.863 1.16 5.926 5.441 1.09
183.equake 24.160 22.215 1.09 24.498 26.159 0.94
188.ammp 87.710 93.219 0.88 91.520 96.941 0.94
164.gzip 49.297 40.049 1.23 52.012 40.011 1.29
175.vpr 19.664 15.074 1.30 21.394 19.713 1.09
176.gcc 4.747 3.421 1.39 40.157 52.579 0.76
181.mcf 32.720 27.628 1.18 32.397 28.425 1.14
186.crafty 31.132 25.211 1.23 ** ** **
197.parser 8.456 6.261 1.35 10.591 9.383 1.12
252.eon 2.047 1.733 1.18 8.885 18.992 0.47
253.perlbmk * * * * * *
254.gap 6.745 4.727 1.41 12.526 13.725 0.91
255.vortex 9.394 10.025 0.94 17.845 25.053 0.71
256.bzip2 52.161 32.933 1.58 52.872 33.647 1.57
300.twolf 14.177 11.202 1.27 ** ** **

Table 2: Running time for static and JIT compilations comparing the local and
ls+join+memop register allocators (* running times are too short to compare,
** benchmark run fails).

In a later study, a variant of linear scan that attempted to take advantage
of SSA and work well with register constraints was proposed in [MP02]. This
variant, like second-chance bin packing, takes advantage of lifetime interval
holes. Furthermore it joins live intervals in a similar way as I presented in
Section 3.2.

6 Conclusion and further work

In this paper, I presented several refinements to the linear scan register alloca-
tion algorithm. These refinements successfully improve the quality of code, while
reducing compilation time. Improving code quality is always an advantage in
any compiler framework. Reducing compilation complexity and computational
resources makes this variant of linear scan a better candidate for use in a just
in time compiler when compilation speed is of critical importance.

There are several directions to improving the algorithm even more. Given
the relatively inexpensive way of updating live interval information, it will be
interesting to see how a profile driven, region based linear scan register allocator
can benefit a JIT compiler. Another improvement will be to introduce new
temporaries for each def or use of a spilled temporary so that spill code is not
constrained to use only one register.

9

An interesting study could be done comparing an aggressive graph coloring
register allocator to this variant of linear scan. In previous studies, [PS99] and
[THS98] it was shown that linear scan performs in the range of 10% of a good
quality graph coloring register allocator. Given the proposed improvements, it
is hoped that the gap will be further reduced but that has yet to be determined.

References

[LA04] Chris Lattner and Vikram Adve. LLVM: A Compilation Framework
for Lifelong Program Analysis & Transformation. In Proceedings of the
2004 International Symposium on Code Generation and Optimization
(CGO’04), Palo Alto, California, Mar 2004.

[MP02] Hanspeter Mossenbock and Michael Pfeiffer. Linear scan register allo-
cation in the context of ssa form and register constraints. In Proceed-
ings of the 11th International Conference on Compiler Construction,
pages 229–246. Springer-Verlag, 2002.

[PEK97] Massimiliano Poletto, Dawson R. Engler, and M. Frans Kaashoek.
tcc: A system for fast, flexible, and high-level dynamic code genera-
tion. In SIGPLAN Conference on Programming Language Design and
Implementation, pages 109–121, 1997.

[PS99] Massimiliano Poletto and Vivek Sarkar. Linear scan register alloca-
tion. ACM Transactions on Programming Languages and Systems,
21(5):895–913, 1999.

[THS98] Omri Traub, Glenn H. Holloway, and Michael D. Smith. Quality and
speed in linear-scan register allocation. In SIGPLAN Conference on
Programming Language Design and Implementation, pages 142–151,
1998.

10

1 UNHANDLED = intervals in increasing start point
2 FIXED = fixed intervals in increasing start point
3 ACTIVE = { }
4 INACTIVE = { }
5 HANDLED = { }
6 REGMAP = a map from INT.reg to machine registers
7

8 while (UNHANDLED not empty) do
9 let INT <- interval with earliest start point

10

11 foreach INT’ in ACTIVE
12 if (INT’ expired at INT.start)
13 remove INT’ from ACTIVE
14 mark REGMAP[INT’.reg] free
15 else if (INT’ not live at INT.start)
16 move INT’ to INACTIVE
17 mark REGMAP[INT’.reg] free
18

19 foreach INT’ in INACTIVE
20 if (INT’ expired at INT.start)
21 remove INT’ from INACTIVE
22 else if (INT’ live at INT.start)
23 move INT’ to ACTIVE
24 mark REGMAP[INT’.reg] used
25

26 if (INT fixed)
27 add INT in ACTIVE
28 mark REGMAP[INT.reg] as used
29 else
30 ASSIGN-REG-OR-MEM(INT)

Figure 3: LINEAR-SCAN algorithm.

11

1 // INT <- the interval to allocate
2

3 save physical register free/use state
4

5 foreach INT’ in ACTIVE
6 UPDATE-SPILL-WEIGHTS(INT’)
7

8 foreach INT’ in INACTIVE and FIXED
9 if (INT overlaps INT’)

10 UPDATE-SPILL-WEIGHTS(INT’)
11 mark REGMAP[INT’.reg] used
12

13 let R <- free register for INT.reg of NULL
14

15 restore physical register free/use state
16

17 if R != NULL
18 REGMAP[INT.reg] = R
19 mark R used
20 add INT to ACTIVE
21 add INT to HANDLED
22 else
23 let REG-OF-MIN-WEIGHT <- register with min spill weight
24 let MIN-WEIGHT <- weight of REG-OF-MIN-WEIGHT
25

26 if (INT.weight <= MIN-WEIGHT)
27 UPDATE-SPILLED-INTERVAL(INT)
28 if (INT is not empty)
29 insert INT at correct position in UNHANDLED
30 else
31 prepend INT to UNHANDLED
32 let EARLIEST-START <- INT.start
33

34 foreach INT’ in ACTIVE and INACTIVE
35 if (regmap[INT’.reg] == REG-OF-MIN-WEIGHT &&
36 INT’ not fixed && INT’ overlaps INT)
37 EARLIEST-START = min(EARLIEST-START, INT’.start)
38 UPDATE-SPILLED-INTERVAL(INT’)
39

40 ROLLBACK(EARLIEST-START)

Figure 4: ASSIGN-REG-OR-MEM(INT) algorithm.

12

1 // INT <- interval to be updated
2

3 let INT’ <- spilled interval for INT.reg
4

5 foreach instruction I in INT
6 let I.n <- index of instruction
7 let I.next.n <- index of next instruction
8

9 fold as many references of INT.reg in I
10 for each reference R of INT.reg
11 let START <- R is use ? USE-SLOT(I.n) : DEF-SLOT(I.n)
12 let END <- R is def ? USE-SLOT(I.next.n) : USE-SLOT(I.n)
13 add range [START, END)

Figure 5: UPDATE-SPILLED-INTERVAL(INT) algorithm.

1 // EARLIEST-START <- start of earliest interval affected
2

3 while (HANDLED not empty)
4 let INT’ <- last interval in HANDLED
5

6 if (INT’.start < EARLIEST-START)
7 break
8

9 remove INT’ from HANDLED
10 if (INT’ in ACTIVE)
11 mark REGMAP[INT’.reg] as free
12

13 remove INT’ from ACTIVE or INACTIVE
14 if (INT’ is not empty)
15 insert INT’ at correct position in UNHANDLED
16

17 foreach INT’ in HANDLED
18 if (INT’ expired after EARLIEST-START)
19 add INT’ to ACTIVE
20 mark REGMAP[INT’.reg] used

Figure 6: ROLLBACK(EARLIEST-START) algorithm.

13

Compile Time

0
10
20
30
40
50
60
70
80

17
7.m

es
a

17
9.a

rt

18
3.e

qu
ak

e

18
8.a

mmp

16
4.g

zip

17
5.v

pr

17
6.g

cc

18
1.m

cf

18
6.c

raf
ty

19
7.p

ars
er

25
2.e

on

25
3.p

erl
bm

k

25
4.g

ap

25
5.v

ort
ex

25
6.b

zip
2

30
0.t

wolf

tim
e

(s
ec

s)

local linear scan ls+memop ls+join ls+join+memop

Figure 7: Compile Time.

Code Size

0
100000
200000
300000
400000
500000
600000
700000
800000

17
7.m

es
a

17
9.a

rt

18
3.e

qu
ak

e

18
8.a

mmp

16
4.g

zip

17
5.v

pr

17
6.g

cc

18
1.m

cf

18
6.c

raf
ty

19
7.p

ars
er

25
2.e

on

25
3.p

erl
bm

k

25
4.g

ap

25
5.v

ort
ex

25
6.b

zip
2

30
0.t

wolf

m
ac

hi
ne

 in
st

ru
ct

io
ns

local linear scan ls+memop ls+join ls+join+memop

Figure 8: Code Size.

14

Code Quality

0
10
20
30
40
50
60
70
80
90

100

17
7.m

es
a

17
9.a

rt

18
3.e

qu
ak

e

18
8.a

mmp

16
4.g

zip

17
5.v

pr

17
6.g

cc

18
1.m

cf

18
6.c

raf
ty

19
7.p

ars
er

25
2.e

on

25
3.p

erl
bm

k

25
4.g

ap

25
5.v

ort
ex

25
6.b

zip
2

30
0.t

wolf

lo
ad

s/
st

or
es

 a
dd

ed
 (K

)

local linear scan ls+memop ls+join ls+join+memop

Figure 9: Code Quality - Loads/Stores added.

Code Quality

0

20

40

60

80

100

17
7.m

es
a

17
9.a

rt

18
3.e

qu
ak

e

18
8.a

mmp

16
4.g

zip

17
5.v

pr

17
6.g

cc

18
1.m

cf

18
6.c

raf
ty

19
7.p

ars
er

25
2.e

on

25
3.p

erl
bm

k

25
4.g

ap

25
5.v

ort
ex

25
6.b

zip
2

30
0.t

wolf

m
em

or
y

re
fe

re
nc

es
 a

dd
ed

 (K
)

local linear scan ls+memop ls+join ls+join+memop

Figure 10: Code Quality - Added Memory References.

15

	Abstract
	Introduction
	Refinements to Linear Scan
	Live Intervals
	Register move coalescing
	Elimination of reserved registers
	Fusing spill code into instructions

	Experimental results
	Register move coalescing
	Fusing spill code into instructions
	Runtime Performance

	Related Work
	Conclusion and further work

