

VRP in LLVM

The PredicateSimplifier pass

by Nick Lewycky

Motivation

void process(int *p, int *q) {
 if (p != q) return;

 if (*p != *q) f(); // not eliminated by LLVM
}

Demotivation

LLVM already optimizes some VRP examples!

The PredicateSimplifier

The PredicateSimplifier is expected to grow
into a full-fledged VRP pass some day.
Currently, it does:

● Variable canonicalization
● Inequality graph
● Value ranges

Symbolic Execution

The pass begins at the entry block and
proceeds, instruction by instruction,
“executing” the code and maintaining
properties.

For example, “%a = udiv i8 %x, %y” implies
that %y ≠ 0, and a branch on %P implies
that %P is true in one side, false in the
other.

Variable Canonicalization

The first thing that PredicateSimplifier does
is canonicalize variables. Constants are
best, then Arguments, then Instructions are
compared by dominance.

If we know that %a = %b, then pick one
and delete the other. All equal variables
point to the same “Node” object storing the
canonical choice.

Dominance

A value is only equal
to another within a
given scope.

We describe this
scope as the set of
dominated blocks.

x dom y iff reaching
y implies that control
passed through x.

%a = %b

%a = 2

Depth First Numbering

Sort by “spread”,
DFS out – DFS in.

A linear scan finds
more specific
(dominating fewer
blocks) properties
first.

Canonical values are
the ones with largest
spread.

1 14

2 11 12 13

3 4 5 8 9 10

6 7

DFS in DFS out

Inequality Graph (1/2)

Every canonical variable is a node in the
inequality graph.

These nodes store their set of edges with
the other nodes. The edges form a semi-
lattice:

Inequality Graph (2/2)

The graph is stored with all transitive
closures filled in (except != relationships).
If %a u< %b u< %c, we also add %a u< %c.

Similarly, if %a u≤ %b u<s> %c then
%a u< %c.

i8 %a i8 %b i8 %c i8 %d

u< u< u<

u<u<

u<

Value Ranges

Efficiently stores the range of possible
values for a variable in terms of hard
numbers.

Given i8 %a u< %b then %a in [0,254] and
%b in [1,255].

These are stored with the same scoping
technique as in the InequalityGraph.

The Work List (1/3)

The worklist stores the list of Instructions
that need to be visited, as well as a bit of
context information.

There is one “add” interface, used internally
and externally to add new properties to this
list. Its interface is modelled after the icmp
instruction, and it takes a BB or Instruction
for context.

The Work List (2/3)

There are two inspection methods that add
new properties:

defToOps – Given that a new property has
been found on an instruction definition, find
new properties of the operands.

opsToDef – Given that a new property has
been found on the operands, find a new
properties on instruction.

The Work List (3/3)

The “context” is required to specify the
scope in which the new properties will
apply.

Consider “%a = or i1 %b, %c” in the entry
block, then %a is found to be false under
block %bb10. We can conclude that %b and
%c are false only under %bb10.

Work-list Example

a = b + c
if (b == 5) { // reanalyzes “a”, finds nothing

if (c == 3) { // reanalyzes “a”, finds it
// equal to 8.

use(a); // this becomes use(8);
}
use(c);

}
use(b);
use(a); // this stays use(a);

What's next?

● PHI nodes:
– PHIs with operands dominate the PHI
– PHIs that dominate their operands (loops)

● Improvements to the work list
● Floating-point number support
● Inter-procedural predsimplify

PHI Matrices

Given:

%a = phi(0 %bb1, %a.incr %bb2)

%b = phi(1 %bb1, 0 %bb2)

If we learn that %a = 10000 then we can
conclude that %b = 0.

Expressions (1/2)

Consider:

%A = icmp ult %x, 5

%B = icmp ugt %x, 10

%bothcond = or i1 %A, %B

br i1 %A, label %cond_true, label %cond_false

Predsimplify will correctly determine that
%cond_true is unreachable, but under
%cond_false it won't show that %x can't be
in [5, 10].

Expressions (2/2)

%bothcond = or i1 %A, %B

When visiting %cond_true, predsimplify
assigns %bothcond to true, but then it
stops. The result of an or statement being
true tells you nothing about the operands.

The Trouble with FP

“Equals” in floating point is an inequality:
● “fcmp eq 0.0, -0.0” is true.
● “fcmp eq 0x7fc00000, 0x7fc00000” is
false.

Just knowing that float %a eq float %b is not
enough to perform variable
canonicalization.

ip-predsimplify

Determining the range of possible returns
of a call, relative to the arguments and
global variables.

Proving BBs unreachable only useful if we
can inline afterwards.

Should be very good at removing
abstraction layers.

