
LLVM for OpenGL and other stuff

Chris Lattner
Apple Computer

clattner@apple.com

OpenGL JIT
OpenGL Vertex/Pixel Shaders

http://llvm.org/

OpenGL Pixel/Vertex Shaders

• Small program, provided at run-time, to be run on each vertex/pixel:
– Written in one of a few high-level graphics languages (e.g. GLSL)

– Executed millions of times, extremely performance sensitive

• Ideally, these are executed on the graphics card:
– What if hardware doesn’t support some feature? (e.g. laptop gfx)

– Interpret or JIT on main CPU

void main() {

 vec3 ecPosition = vec3(gl_ModelViewMatrix * gl_Vertex);

 vec3 tnorm = normalize(gl_NormalMatrix * gl_Normal);

 vec3 lightVec = normalize(LightPosition - ecPosition);

 vec3 reflectVec = reflect(-lightVec, tnorm);

 vec3 viewVec = normalize(-ecPosition);

 float diffuse = max(dot(lightVec, tnorm), 0.0);

 float spec = 0.0;

 if (diffuse > 0.0) {

 spec = max(dot(reflectVec, viewVec), 0.0);

 spec = pow(spec, 16.0);

 }

 LightIntensity = DiffuseContribution * diffuse +

 SpecularContribution * spec;

 MCposition = gl_Vertex.xy;

 gl_Position = ftransform();

}

GLSL Vertex Shader

http://llvm.org/

MacOS OpenGL Before LLVM

• Custom JIT for X86-32 and PPC-32:
– Very simple codegen: Glued chunks of Altivec or SSE code
– Little optimization across operations (e.g. scheduling)
– Very fragile, hard to understand and change (hex opcodes)

• OpenGL Interpreter:
– JIT didn’t support all OpenGL features: fallback to interpreter
– Interpreter was very slow, 100x or worse than JIT

GLSL
Text

OpenGL
AST

http://llvm.org/

OpenGL JIT built with LLVM Components

• At runtime, build LLVM IR for program, optimize, JIT:
– Result supports any target LLVM supports (+ PPC64, X86-64 in MacOS 10.5)

– Generated code is as good as an optimizing static compiler

• Other LLVM improvements to optimizer/codegen improves OpenGL

• Key question: How does the “OpenGL to LLVM” stage work?

LLVM IR LLVM IROpenGL
AST

GLSL
Text

http://llvm.org/

Structure of an Interpreter
• Simple opcode-based dispatch loop:

• One function per operation, written in C:

• In a high-level language like GLSL, each op can be hundreds of LOC

while (...) {
 ...
 switch (cur_opcode) {
 case dotproduct: result = opengl_dot(lhs, rhs); break;
 case texturelookup: result = opengl_texlookup(lhs, rhs); break;
 case ...

double opengl_dot(vec3 LHS, vec3 RHS) {
 #ifdef ALTIVEC
 ... altivec intrinsics ...
 #elif SSE
 ... sse intrinsics ...
 #else
 ... generic c code ...
 #endif
}

Easy to understand and debug,
easy to write each operation (each

operation is just C code)

http://llvm.org/

OpenGL to LLVM Implementation

GLSL

LLVM IR LLVM IROpenGL
AST

llvm-gccOpcode
Functions

C Code
Bytecode

OpenGL Build Time

Bytecode

• At OpenGL build time, compile each opcode to LLVM bytecode:
– Same code used by the interpreter: easy to understand/change/optimize

http://llvm.org/

OpenGL to LLVM: At runtime
1.Translate OpenGL AST into LLVM call instructions: one per operation

2.Use the LLVM inliner to inline opcodes from precompiled bytecode

3.Optimize/codegen as before

 ...

 vec3 viewVec = normalize(-ecPosition);

 float diffuse = max(dot(lightVec, tnorm), 0.0);

 ...

 ...

 %tmp1 = call opengl_negate(ecPosition)

 %viewVec = call opengl_normalize(%tmp1);

 %tmp2 = call opengl_dot(%lightVec, %tnorm)

 %diffuse = call opengl_max(%tmp2, 0.0);

 ...

OpenGL
to LLVM

LLVM Inliner
 ...

 %tmp1 = sub <4 x float> <0,0,0,0>, %ecPosition

 %tmp3 = shuffle <4 x float> %tmp1, ...;

 %tmp4 = mul <4 x float> %tmp3, %tmp3

 ...

Optimize,
Codegen

GLSL

LLVM IR LLVM IROpenGL
AST

http://llvm.org/

Benefits of this approach

• Key features of this approach:
– Each opcode is written/debugged for a simple interpreter, in standard C

– Retains all advantages of an interpreter: debugability, understandability, etc

– Easy to make algorithmic changes to opcodes

– OpenGL runtime is independent of opcode implementation

• Primary contributions to Mac OS:
– Support for PPC64/X86-64

– Much better performance: optimizations, regalloc, scheduling, etc

– No fallback to interpreter needed!

– OpenGL group doesn’t maintain their own JIT!

Another Example: Colorspace Conversion

• Code to convert from one coordinate system to another:
! e.g. BGRA 444R -> RGBA 8888

! Hundreds of combinations, importance depends on input

Run Time
Specialize

Compiler optimizes
shifts and masking

LLVM + Dynamic Languages

http://llvm.org/

LLVM and Dynamic Languages

• Dynamic languages are very different than C:
– Extremely polymorphic, reflective, dynamically extensible

– Standard compiler optzns don’t help much if “+” is a dynamic method call

• Observation: in many important cases, dynamism is eliminable
– Solution: Use dataflow and static analysis to infer types:

var i;
for (i = 0; i < 10; ++i)
 ... A[i] ...

‘i’ starts as an integer

++ on integer returns integer

i isn’t modified anywhere else

– We proved “i” is always an integer: change its type to integer instead of object

– Operations on “i” are now not dynamic

– Faster, can be optimized by LLVM (e.g. loop unrolling)

http://llvm.org/

Advantages and Limitations of Static Analysis

• Works on unmodified programs in scripting languages:
– No need for user annotations, no need for sub-languages

• Many approaches for doing the analysis (with cost/benefit tradeoffs)

• Most of the analyses could work with many scripting languages:
– Parameterize the model with info about the language operations

• Limitation: cannot find all types in general!
– That’s ok though, the more we can prove, the faster it goes

http://llvm.org/

Scripting Language Performance

• Ahead-of-Time Compilation provides:
– Reduced memory footprint (no ASTs in memory)

– Eliminate (if no ‘eval’) or reduce use of interpreter at runtime (save code size)

– Much better performance if type inference is successful

• JIT compilation provides:
– Full support for optimizing eval’d code (e.g. json objects in javascript)

– Runtime “type profiling” for speculative optimizations

• LLVM provides:
– Both of the above, with one language -> llvm translator

– Install-time codegen

– Continuously improving set of optimizations and targets

– Ability to inline & optimize code from different languages

– inline your runtime library into the client code?

