
LLVM Register Allocation

Evan Cheng
Apple Inc.

August 1, 2008

LLVM Register Allocation

• Motivation
• Overview
• Optimizations
• Future Work

Isn’t It Done?

• Code generator does a reasonable job
– LLVM code generator has proven to be quite capable
– Roughly ~5% better than GCC 4.2 on x86 SPEC
– About the same as GCC on x86-64
– Even better on codecs

• But...

Really, Why Do We Care?

• Squeeze out that last few percentages of performance
• Fix the pathological cases
• Improve compile time for JIT and static codegen
• Enable more aggressive optimizations

LLVM Design Philosophy

• Each optimization pass should be as aggressive as possible
• Later passes must do *the right thing* to avoid pessimization
• Earlier optimization passes may increase register pressure
• Register allocation must be able to deal with the increased register pressure

loop_preheader:

brcc bb1

Example: Machine LICM

bb1:

...

 = v1
...
brcc bb1

This must be good, right?

v1 = VSET0 // xor xmm0,xmm0

Example: Machine LICM cont.
•Not necessarily!

loop_preheader:

brcc bb1

bb1:
...

...
brcc bb1

v1 = VSET0 // xor xmm0,xmm0

v1.1 = load [fi#1]

= v1= v1.1

It increases register pressure
so v1 may be spilled store v1, [fi#1]

LLVM Register Allocation

• Motivation
• Overview
• Optimizations
• Future Work

Design of the Register Allocator

PHI Elimination Two-Address Coalescing

Rewriter

Linear Scan
Allocator Spiller

PHI Elimination

Problem: Introduce lots of copies for the coalescer

BB1:
v1 =

BB2:
v2 =

BB3:
v3 =

BB4:
v4 = phi <v1, BB1>, <v2, BB2>, <v3, BB3>

v5 = v1 v5 = v2 v5 = v3

v4 = v5

Move code out of SSA form and eliminate PHI instructions

Design of the Register Allocator

PHI Elimination Two-Address Coalescing

Linear Scan
Allocator

Rewriter

Spiller

v1 = add , v3

Two-Address Pass

v1 = v2

Convert SSA 3-address instructions into instructions with read-modify-write
operands

v2v1

Design of the Register Allocator

PHI Elimination Two-Address Coalescing

Linear Scan
Allocator

Rewriter

Spiller

Register Coalescing
Eliminate copies by registers renaming

v1 =
...

...
 = v1<kill>
...

v1 live interval v2 live interval

• Implementation is very aggressive:
– Does value numbering to coalesce live ranges that “conflict”

Safe to rewrite v2 to v1 even though the intervals
overlap because v1 is not changed.v2 = v1

 = v2<kill>

v1 = v1

= v1

Why coalesce aggressively?

• Coalescing expects allocator to split later if needed

• Don’t trust random decisions from input:
– Copies coming in are from PHI elimination

• Can be useful places to split to reduce register pressure, but:
– cannot be trusted, miss many important cases
– coalescing happens before we know true register pressure

Design of the Register Allocator

PHI Elimination Two-Address Coalescing

Rewriter

Linear Scan
Allocator Spiller

Linear Scan Register Allocator
Single pass over list of variable live intervals ordered by starting points

v1 v2 v3

r1 r2 r3

v4 v5

?

Starting from v1, followed by
v2, v3, v4, and then v5

r3

v3 live interval ends here, r3
is now available

v5 conflicts with v1, v2, and
v4, spilling is required

v4.1 =
store v4.1, [fi#1]

v4.2 = load [fi#1]
 = v4.2

Linear Scan Register Allocator cont.
•Picking spill candidate based on def / use “density”
•Backtrack to the starting point of the spilled live interval

v4 is then broken into two smaller intervals that
do not conflicts v5

v1 v2 v3

r1 r2 r3

v4 v5

r3

Picked v4 to spill

• Spiller and allocator share responsibilities:
– Linear scan decides: which live interval to spill
– Spiller decides: how the interval is spilled

• Major problem:
– Spill code insertion is deferred until all of allocation is done
– Major bookkeeping nightmare

Linear Scan Register Allocator cont.

Linear Scan
Allocator Spiller

Design of the Register Allocator

PHI Elimination Two-Address Coalescing

Rewriter

Linear Scan
Allocator Spiller

• Rewrite virtual registers to allocated physical registers
• Insert spill and reload code
• Also perform some micro-optimizations

Rewriter

v2 = addri v1, 17
v3 = mulrr v4, vr2
...

Allocations:
v1 -> EBX
v2 -> EAX
v3 -> EAX
v4 -> FI#4, ECX
...

EAX = addri EBX, 17
ECX = load [FI#4]
EAX = mulrr ECX, EAX
...

LLVM Register Allocation

• Motivation
• Overview
• Optimizations
• Future Work

v1 = add v1, v2<kill>

Coalescing: Instruction Commuting

bb:
// v2 is livein
v1 = op
...

...

v1 live interval v2 live interval

“add” is commutable

v2 = v1
...
 = v1<kill>

v2 = add v2, v1<kill>

v2 = v2
...
 = v2<kill>

Forward substitute

Coalescing: Sub-registers
•Eliminate pseudo instructions to “extract” part of a register

•Critical for targets such as X86 which has registers that are part of larger registers
• e.g. AL, AH are sub-registers of AX; AX is a sub-register of EAX

bb:
...
v1 = op
...

...
v2 = extract_subreg v1<kill>,

 = v2<kill>

 2v1 = v1

 = v1<subreg# ,kill>

bb:
...
EAX = op
...

...
 = EAX<subreg#2 ,kill> = AX<kill>

Spilling: Fold Spills and Reloads

v1

v1.2 = add32rr v1.1, 3

BB:
 v1.3 = load [fi#1]
 v2 = add32rr v2, v1.3

v1.5 = load [fi#1]
v4 = and32rr v4, v1.5

v1.4 = load [fi#1]
v3 = xor32rr v3, v1.4

add32mi [fi#1], 3

v2 = add32rm v2, [fi#1]

v4 = and32rm v4, [fi#1]

v3 = xor32rm v3, [fi#1]

v1.1 = load [fi#1]

store v1.2, [fi#1]

 v2 = add32rr v2,
v1.1 = load fi#1

Spilling: Splitting at BB Boundaries

v4 = and32rm v4, [fi#1]

add32mi fi#1, 3

High register pressure,
spill again.

v1

BB:

v4 = and32rr v4,

v3 = xor32rr v3,

v1.2 = add32rr v1.1, 3
v1.1 = load [fi#1]

store v1.2, [fi#1]

 v1.3 = load [fi#1]

v1.4 = load [fi#1]

v1.5 = load [fi#1]
v1.5

v1.4

v1.3

v1.1

v1.1

v1.1

v1.1 = VSET0 // xor xmm0,xmm0

Machine LICM example visited:
Simple Re-materialization

•Currently only re-materialize instructions with no register operands
•Hacked to allow PIC base register operands

loop_preheader:

brcc bb1

bb1:
...

...
brcc bb1

v1.1 = load [fi#1]
= v1.1

v1 = VSET0 // xor xmm0,xmm0
store v1, [fi#1]

Generalized Re-materialization
loop_preheader:
v1 = load L_GV$stub
v2 = load v1
brcc bb1

bb1:
v3 = add32rr v2, k
...
 = v2

brcc bb1

bb1:
v1.1 = load L_GV$stub
v2.1 = load v1.1
v3 = add32rr v2.1, k
...
v1.2 = load L_GV$stub
v2.2 = load v1.2
 = v2.2

brcc bb1

•Need alias analysis information for load motion
•Must track available values / register

bb1:
v1.1 = load L_GV$stub
v2.1 = load v1.1
v3 = add32rr v2.1, k
...

 = v2.2

brcc bb1

v1.2 = load L_GV$stub
v2.2 = load v1.2Note v1.1 is available here!v2.2 = load v1.1

LLVM Register Allocation

• Motivation
• Overview
• Optimizations
• Future Work

Goals

• Faster compile times
• Generate faster code
• More maintainable and flexible code generator

v0 = . . .

v1 = . . .

v2 = Φ(v0, v1)

v0 = . . .
v3 = v0

v1 = . . .
v3 = v1

v2 = v3

v3 = . . .

v1 = . . .
v3 = v1

v2 = v3

Strong PHI Elimination

• Perform PHI elimination less naively
• Less work for the coalescer, compile-time benefit

Next Step: Iterative Splitting

• Split on loop boundaries

loop_preheader:
...

...

 = op v1.1

...
 = op v1.1

 = op v1.1

...

...

...

 = op v1.1

...
 = op v1.1

1. Insert
reload in loop
preheader

v1.1 = load [fi#1]

2. Insert reloads
to start of BB’s

v1.2 = load [fi#1]
...
 = op v1.1
 = op v1.2
...
 = op v1.1
 = op v1.2

...
v1.2 = load [fi#1]
 = op v1.1
 = op v1.2
...
...
...

 = op v1.1
 = op v1.2

...
 = op v1.1
 = op v1.2

3. Insert reloads
before a number

of close uses.

...
v1.2 = load [fi#1]
 = op v1.1
 = op v1.2
...
...
...
v1.3 = load [fi#1]
 = op v1.1
 = op v1.2
 = op v1.3
...
 = op v1.1
 = op v1.2
 = op v1.3

• Split on basic block boundaries
• Intra-block splitting

Aggressive Re-materalization
loop_preheader:
v1 = X + 4
v2 = X + 7
v3 = X + 15

loop:
load [iv + v1]
...
load [iv + v2]
...
load [iv + v3]

loop:
v1.1 = X + 4
load [iv + v1.1]
...
v2.1 = X + 7
load [iv + v2.1]
...
v3.1 = X + 15
load [iv + v3.1]

Re-materialize

loop:
X.1 = iv + X
load [X.1 + 4]
...
load [X.1 + 7]
...
load [X.1 + 15]

Re-association
to enable
sharing

Spilling due to register
pressue

Backtracking in Linear Scan Allocator

• Two conflicting problems:
– Assign registers aggressively to maximally use them, spilling when they run out
– Spilling a use requires a register to reload into; a def must also target a register

before it is spilled

v1 v2 v3 v4
v1 = op

v2 = op

v3 = op

v4 = op

use v1

use v2

use v3

use v4

r1 r2 r3

Needs a register to hold destination

Backtrack and spill

r3

v5 conflicts with v4, spill v4

• Problem: Backtracking is slow, requires
redoing and undoing regalloc

• Solution: Add ability to spill previously
allocated interval without backtracking,
i.e. no more linear scan!

r3

v5

r3

r1

r3

Summary: Much to be done!
• High Level Plans:
– Smarter PHI elimination for faster compiles
– Kill backtracking: Use iterative approach instead of linear scan
– Maintainability: Insert spill code during spilling instead of after regalloc

• Improved Spilling:
– Split live intervals at arbitrary places
– Aggressive re-materialization in spiller
– Use availability info to remat instructions with reg uses
– Use alias Info to remat loads

– Reschedule to reduce register pressure?

Questions?

