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e Interprets bytecode
e No code optimizations
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PHP bytecode

e Memory based (vs register or stack based)

e No standard representation

e Designed to be executed and discarded

e Some information is not stored in bytecode
(e.g. class definitions)



filename:

Jevs/pecl/11lvm/test?.php

function name: (null)
number of ops: 9
compiled vars: !0 = §a
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Design Rationale

e Do not rewrite the whole VM from scratch
e Have a proof-of-concept working ASAP
e Leave room for future optimizations
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Implementation

e \Works as a Zend VM extension
("a speedup plugin®)
e Hooks as the bytecode executor

e Updates the state of the VM
e Can be used along with the old interpreter
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Implementation #2

e Offline compilation of Zend VM bytecode
handlers to LLVM

e Translation of bytecodes to handler calls

e JIT compilation of one function at a time

e Performs simple optimizations (including
inlining)

e Uses a small runtime "library”
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zend execute()

while (1) {
int ret;

if ((ret = EX(opline)->handler(data)) > 0) {
switch (ret) {

-
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filename:
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function name: (null)
number of ops: 9
compiled vars: !0 = §a
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LLVM bitcode

op_block:
%execute data = call @phpllvm_get _execute data(%1)

%execute result = call
@ZEND IS SMALLER HANDLER(%execute data)

switch 132 %execute result, label %op block1 |
132 1, label %pre_vm_return
132 2, label %pre_vm_enter
132 3, label %pre_vm _leave




LLVM bitcode

op block1:
%execute data = call @phpllvm_get_execute data(%1)

%execute result = call @ZEND_JMPZ HANDLER(%
execute data)

%current = call i32 @phpllvm_get opline_number(%1)

switch 132 %current, label %ret |
132 5, label %op_ block5
132 2, label %op_block2

]



Results of "Hello World"

e VVanilla: 0.03s

e JIT Debug: 2.5s

e JIT Release: 0.68s

e JIT Release+no asserts: 0.64s

Slowdown: 21X



Results

B vanilla
i B JIT
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simplecall mandel2 ary2(50000) hash1(50000) matrix(20) Sieve(30)
simple mandel ary(50000) ary3(2000) hash2(500) nestedloop(20) Strcat(200000)
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Future Work

e Compiled code caching and sharing

e Self-executable apps ("normal”, GTK,
etc..)

e Self-contained webapps (with e.g. Apache)

e Optimizations (lots of them :)



Questions?



