
Building a JIT compiler for
PHP in 2 days

Nuno Lopes
nuno.lopes@ist.utl.pt

Instituto Superior Técnico
Technical University of Lisbon

Outline

Overview of the Zend VM
Design Rationale
Implementation
Results
Future Work

Overview of the Zend VM

Overview of the Zend VM

Syntax-directed translation

Overview of the Zend VM

Syntax-directed translation
Interprets bytecode

Overview of the Zend VM

Syntax-directed translation
Interprets bytecode
No code optimizations

PHP bytecode

PHP bytecode

Memory based (vs register or stack based)

PHP bytecode

Memory based (vs register or stack based)
No standard representation

PHP bytecode

Memory based (vs register or stack based)
No standard representation
Designed to be executed and discarded

PHP bytecode

Memory based (vs register or stack based)
No standard representation
Designed to be executed and discarded
Some information is not stored in bytecode
(e.g. class definitions)

<?php
if (1 > 2)
 $a = 2 * 3;
else
 $a = 2 * 4;

echo $a;
?>

Design Rationale

Design Rationale

Do not rewrite the whole VM from scratch

Design Rationale

Do not rewrite the whole VM from scratch
Have a proof-of-concept working ASAP

Design Rationale

Do not rewrite the whole VM from scratch
Have a proof-of-concept working ASAP
Leave room for future optimizations

Implementation

Implementation

Works as a Zend VM extension
("a speedup plugin")

Implementation

Works as a Zend VM extension
("a speedup plugin")
Hooks as the bytecode executor

Implementation

Works as a Zend VM extension
("a speedup plugin")
Hooks as the bytecode executor
Updates the state of the VM

Implementation

Works as a Zend VM extension
("a speedup plugin")
Hooks as the bytecode executor
Updates the state of the VM
Can be used along with the old interpreter

Implementation #2

Implementation #2

Offline compilation of Zend VM bytecode
handlers to LLVM

Implementation #2

Offline compilation of Zend VM bytecode
handlers to LLVM
Translation of bytecodes to handler calls

Implementation #2

Offline compilation of Zend VM bytecode
handlers to LLVM
Translation of bytecodes to handler calls
JIT compilation of one function at a time

Implementation #2

Offline compilation of Zend VM bytecode
handlers to LLVM
Translation of bytecodes to handler calls
JIT compilation of one function at a time
Performs simple optimizations (including
inlining)

Implementation #2

Offline compilation of Zend VM bytecode
handlers to LLVM
Translation of bytecodes to handler calls
JIT compilation of one function at a time
Performs simple optimizations (including
inlining)
Uses a small runtime "library"

zend_execute()

while (1) {
 int ret;

 if ((ret = EX(opline)->handler(data)) > 0) {
 switch (ret) {
 ...
 }
 }
}

<?php
if (1 > 2)
 $a = 2 * 3;
else
 $a = 2 * 4;

echo $a;
?>

LLVM bitcode

op_block:

%execute_data = call @phpllvm_get_execute_data(%1)

%execute_result = call
@ZEND_IS_SMALLER_HANDLER(%execute_data)

switch i32 %execute_result, label %op_block1 [
 i32 1, label %pre_vm_return
 i32 2, label %pre_vm_enter
 i32 3, label %pre_vm_leave
]

LLVM bitcode
op_block1:

%execute_data = call @phpllvm_get_execute_data(%1)

%execute_result = call @ZEND_JMPZ_HANDLER(%
execute_data)

%current = call i32 @phpllvm_get_opline_number(%1)

switch i32 %current, label %ret [
 i32 5, label %op_block5
 i32 2, label %op_block2
]

Results of "Hello World"

Vanilla: 0.03s
JIT Debug: 2.5s
JIT Release: 0.68s
JIT Release+no asserts: 0.64s

Slowdown: 21x

Results

Future Work

Future Work

Compiled code caching and sharing

Future Work

Compiled code caching and sharing
Self-executable apps ("normal", GTK,
etc..)

Future Work

Compiled code caching and sharing
Self-executable apps ("normal", GTK,
etc..)
Self-contained webapps (with e.g. Apache)

Future Work

Compiled code caching and sharing
Self-executable apps ("normal", GTK,
etc..)
Self-contained webapps (with e.g. Apache)
Optimizations (lots of them :)

Questions?

