Building a JIT compiler for
PHP in 2 days

Nuno Lopes
nuno.lopes@ist.utl.pt
Instituto Superior Técnico
Technical University of Lisbon

Outline

e Overview of the Zend VM
e Design Rationale
e Implementation

e Results
e Future Work

Overview of the Zend VM

Overview of the Zend VM

e Syntax-directed translation

Overview of the Zend VM

e Syntax-directed translation
e Interprets bytecode

Overview of the Zend VM

e Syntax-directed translation
e Interprets bytecode
e No code optimizations

I Script Entry
Compile
zend_compile

Execute
zend_execute

B0080A00

include file function call

Script Entry

v

Compile
my_compile file has been
seen before

file has not been
seen before

Compile

zend_compile

v

[Store Opcodes J

v

Execute

zend_execute

@0gEgeEn0)

include file function call

Retrieve Cached
Opcodes

J

PHP bytecode

PHP bytecode

e Memory based (vs register or stack based)

PHP bytecode

e Memory based (vs register or stack based)
e No standard representation

PHP bytecode

e Memory based (vs register or stack based)
e No standard representation
e Designed to be executed and discarded

PHP bytecode

e Memory based (vs register or stack based)

e No standard representation

e Designed to be executed and discarded

e Some information is not stored in bytecode
(e.g. class definitions)

filename:

Jevs/pecl/11lvm/test?.php

function name: (null)
number of ops: 9
compiled vars: !0 = §a

0
1
2
3
4
5
6
7
8

IS_SMALLER
JMPZ

MUL

ASSIGN

JMP

MUL

ASSIGN
ECHO
RETURN

operands

~0, ->5

Design Rationale

Design Rationale

e Do not rewrite the whole VM from scratch

Design Rationale

e Do not rewrite the whole VM from scratch
e Have a proof-of-concept working ASAP

Design Rationale

e Do not rewrite the whole VM from scratch
e Have a proof-of-concept working ASAP
e Leave room for future optimizations

Implementation

Implementation

e \Works as a Zend VM extension
("a speedup plugin®)

Implementation

e \Works as a Zend VM extension
("a speedup plugin®)
e Hooks as the bytecode executor

Implementation

e \Works as a Zend VM extension
("a speedup plugin®)

e Hooks as the bytecode executor

e Updates the state of the VM

Implementation

e \Works as a Zend VM extension
("a speedup plugin®)
e Hooks as the bytecode executor

e Updates the state of the VM
e Can be used along with the old interpreter

Implementation #2

| Iy

Implementation #2

e Offline compilation of Zend VM bytecode
handlers to LLVM

| Iy

Implementation #2

e Offline compilation of Zend VM bytecode
handlers to LLVM
e Translation of bytecodes to handler calls

| Iy

Implementation #2

e Offline compilation of Zend VM bytecode
handlers to LLVM

e Translation of bytecodes to handler calls

e JIT compilation of one function at a time

| Iy

Implementation #2

e Offline compilation of Zend VM bytecode
handlers to LLVM

e Translation of bytecodes to handler calls

e JIT compilation of one function at a time

e Performs simple optimizations (including
inlining)

| Iy

Implementation #2

e Offline compilation of Zend VM bytecode
handlers to LLVM

e Translation of bytecodes to handler calls

e JIT compilation of one function at a time

e Performs simple optimizations (including
inlining)

e Uses a small runtime "library”

I Script Entry
Compile
zend_compile

Execute
zend_execute

B0080A00

include file function call

zend execute()

while (1) {
int ret;

if ((ret = EX(opline)->handler(data)) > 0) {
switch (ret) {

-
J
J

filename:

Jevs/pecl/11lvm/test?.php

function name: (null)
number of ops: 9
compiled vars: !0 = §a

0
1
2
3
4
5
6
7
8

IS_SMALLER
JMPZ

MUL

ASSIGN

JMP

MUL

ASSIGN
ECHO
RETURN

operands

~0, ->5

LLVM bitcode

op_block:
%execute data = call @phpllvm_get _execute data(%1)

%execute result = call
@ZEND IS SMALLER HANDLER(%execute data)

switch 132 %execute result, label %op block1 |
132 1, label %pre_vm_return
132 2, label %pre_vm_enter
132 3, label %pre_vm _leave

LLVM bitcode

op block1:
%execute data = call @phpllvm_get_execute data(%1)

%execute result = call @ZEND_JMPZ HANDLER(%
execute data)

%current = call i32 @phpllvm_get opline_number(%1)

switch 132 %current, label %ret |
132 5, label %op_ block5
132 2, label %op_block2

]

Results of "Hello World"

e VVanilla: 0.03s

e JIT Debug: 2.5s

e JIT Release: 0.68s

e JIT Release+no asserts: 0.64s

Slowdown: 21X

Results

B vanilla
i B JIT
]‘ JJiI“ ‘J

simplecall mandel2 ary2(50000) hash1(50000) matrix(20) Sieve(30)
simple mandel ary(50000) ary3(2000) hash2(500) nestedloop(20) Strcat(200000)

Future Work

Future Work

e Compiled code caching and sharing

Future Work

e Compiled code caching and sharing
e Self-executable apps ("normal”, GTK,
etc..)

Future Work

e Compiled code caching and sharing

e Self-executable apps ("normal”, GTK,
etc..)

e Self-contained webapps (with e.g. Apache)

Future Work

e Compiled code caching and sharing

e Self-executable apps ("normal”, GTK,
etc..)

e Self-contained webapps (with e.g. Apache)

e Optimizations (lots of them :)

Questions?

