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PHP bytecode

Memory based (vs register or stack based) 
No standard representation
Designed to be executed and discarded
Some information is not stored in bytecode 
(e.g. class definitions)



<?php
if (1 > 2)
        $a = 2 * 3;
else
        $a = 2 * 4;

echo $a;
?>
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Design Rationale

Do not rewrite the whole VM from scratch
Have a proof-of-concept working ASAP
Leave room for future optimizations
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Implementation

Works as a Zend VM extension
("a speedup plugin")
Hooks as the bytecode executor
Updates the state of the VM
Can be used along with the old interpreter
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Implementation #2

Offline compilation of Zend VM bytecode 
handlers to LLVM 
Translation of bytecodes to handler calls
JIT compilation of one function at a time
Performs simple optimizations (including 
inlining)
Uses a small runtime "library" 





zend_execute()

while (1) {
    int ret;

    if ((ret = EX(opline)->handler(data)) > 0) {
        switch (ret) {
            ...
        }
    }
}



<?php
if (1 > 2)
        $a = 2 * 3;
else
        $a = 2 * 4;

echo $a;
?>



LLVM bitcode

op_block:
 
%execute_data = call @phpllvm_get_execute_data(%1)
 
%execute_result = call 
@ZEND_IS_SMALLER_HANDLER(%execute_data)
 
switch i32 %execute_result, label %op_block1 [
     i32 1, label %pre_vm_return
     i32 2, label %pre_vm_enter
     i32 3, label %pre_vm_leave
]



LLVM bitcode
op_block1:
 
%execute_data = call @phpllvm_get_execute_data(%1)
 
%execute_result = call  @ZEND_JMPZ_HANDLER(%
execute_data)
 
%current = call i32 @phpllvm_get_opline_number(%1)
 
switch i32 %current, label %ret [
     i32 5, label %op_block5
     i32 2, label %op_block2
]



Results of "Hello World"

Vanilla: 0.03s
JIT Debug: 2.5s
JIT Release: 0.68s
JIT Release+no asserts: 0.64s

 
Slowdown: 21x 



Results
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Future Work

Compiled code caching and sharing
Self-executable apps ("normal", GTK, 
etc..)
Self-contained webapps (with e.g. Apache)
Optimizations (lots of them :)



Questions?


