

 Actually 181.504k Cores (but we like even numbers)

 What is High-Performance Computing?

 Challenges

 The Compiler’s Role

 LLVM: What Works

 LLVM: What’s Needed

 LLVM: Thinking Forward

 Fast, balanced, scalable machines

 Hundreds of thousands of cores

 Petabytes of memory

 Petaflops of processing power

 To push the envelope of science

 Handling barely-solvable, otherwise intractable leading-edge problems

 Customers that are willing to wrestle with us in the mud

 That are reasonably easy to use

 Scientists should be scientists (not computer scientists)

 Software is king

 Installed at Oak Ridge National Laboratory

 First petascale machine for open science

26
54

119

1642

25000

100000

1000000

1

10

100

1000

10000

100000

1000000

2005 2006 2007 2008 2011 2015 2018

Te
ra

fl
o

p
s

38,000x peak performance increase over 13 years

“Moore’s Law” predicts 512x speedup

 Weather prediction, climate modeling

 Astronomy (supernova modeling, dark matter)

 Biofuel production / enzyme behavior

 Protein folding

 Efficient combustion engines

 Fusion reactor design

 Materials science (superconductors, semiconductor physics,
supercapacitors)

 Keeping users productive

 Language support

 Programming tools

 Enormous codes

 Feedback

 Using flops efficiently

 Memory bandwidth

 Vectorization & parallelization

 Instruction selection

 Securing bid wins (rapid response)

 Keeping compiler developers sane

 Compiler debug hooks

 Ubiquitous IR dumps

 LLVM is a key technology

 Small compiler group

 Went through an extensive internal review to justify x86 project

 There were those who said we couldn’t do it

 LLVM made it possible! (6 months to working prototype)

 LLVM lets us

 Keep our frontends

 Keep our optimizer

 Fully support Cray machines (e.g. network interfaces)

 Rapidly respond to changing customer needs

 Optimizer (PDGCS)

 Sits directly in front of LLVM

 Scalar transformations, restructuring, vectorization, parallelization

Look at LLVM go!

http://www.nccs.gov/2009/08/17/fusion-gets-faster

 Fusion code for ITER development

 2x speedup over previous best (non-Cray compiler)

 I/O & filesystem enhacements (focus of the article)

 Compiler improvements

 Compiler contribution

 Vectorize more than others, particularly low trip count loops

 General memory bandwidth improvements
 Prefetching

 Reuse analysis (optimizer & LLVM)

 Instruction selection improvements (Opteron 10h / Barcelona)
 Relaxed alignment restrictions

 Non-temporal moves

http://www.nccs.gov/2009/08/17/fusion-gets-faster
http://www.nccs.gov/2009/08/17/fusion-gets-faster
http://www.nccs.gov/2009/08/17/fusion-gets-faster
http://www.nccs.gov/2009/08/17/fusion-gets-faster
http://www.nccs.gov/2009/08/17/fusion-gets-faster

 Great user community

 Well-designed modular architecture

 Rock-solid (very few bugs we didn’t introduce)

 Scalar evolution!

 bugpoint

 TableGen (though see the next slide)

 Documentation (though see the next slide)

 A roadmap (major release goals)

 Scalability (very good, but could be better)

 Untested code paths (e.g. schedulers)

 TableGen (esoteric, missing features / multiclass support)

 Documentation (keep it up to date!)

 API fluctuation (deprecation policy)

 More microarchitecure specialization (x86 is Intel-centric right now)

 Revision-specific instructions & features

 Memory system information

 Debug hooks

 Selection / schedule dags can be difficult to debug

 Something to filter enormous amounts of debug output

 Visualization tools

 AVX (LRBni?) implementation (including a rewrite of the SSE specification)

 Tons of debug features

 Circular buffers

 Before / after dumps

 Binary search hooks (disable transformations per-function,
transformations max)

 Asm annotation

 Enhanced bugpoint to work with compilers other than gcc (Fortran)

 Opteron enhancements (new instructions & features)

 Simple memory system models (simple!)

 Lots of bug fixes (need a solution for Fortran tests)

 Near-term architectural horizon is rich!

 GPUs

 Larrabee (http://www.ddj.com/architect/216402188)

 Accelerators (Cell, FPGA)

 Manycore

 To take advantage of this LLVM should

 Express predication (masks) in the IR

 Include more powerful vector operations in the IR
 Gather/scatter

 Mixed vector/scalar

 If you’re writing a parallelizer

 Provide robust messages,
especially negative messages

 Do analyses and transformations
on a high-level IR (PDG or similar)

 Drop dependence information
when necessary

 Provide a visualization of the
high-level IR

http://www.cray.com/About/Careers.aspx

