
Targeting XCore 
Resources from LLVM

Richard Osborne



© 2009 XMOS Ltd.

Introduction

• XMOS
– UK fabless semiconductor Company

• XCore processor
– Aimed at embedded market
– Hardware interfaces in software

• Ethernet, USB 2.0, SPDIF, HDA, Uart, SPI, I2C, I2S, 
MIDI, CAN, SDRAM, VGA, …



© 2009 XMOS Ltd.

XCore Processor

• Ports
– Configurable I/O Engines
– Interface between the processor and a 

collection of pins

• 8 hardware threads
• Inter-thread communication via channels
• Deterministic



© 2009 XMOS Ltd.

XMOS Toolchain today

• C / C++ compiler
– Based on llvm-gcc
– Plain C

• XC Language and compiler
– Compiler developed from scratch
– Explicit parallelism
– Operators for I/O and events
– Compile time safety checks



© 2009 XMOS Ltd.

Extending C with resources

• Goal: Efficiently target XCore hardware 
resources from C.

• Why?
– Remove barrier of learning a new language
– Evaluate feasibility of using LLVM backend for the 

XC compiler
– Better C / XC interoperability



© 2009 XMOS Ltd.

Choosing a frontend

• Choice of clang and llvm-gcc
• Decide to use clang

– Adding XCore target trivial
•  < 100 lines of code

– Design makes it easy to add language extensions



© 2009 XMOS Ltd.

Resources

• Ports
– Access collection of physical pins

• Timers
– Access a free running 100MHz clock

• Chanends
– Two chanends form a channel. 
– Allows communication between threads

• Resources share same basic usage model
• This talk will focus on Port I/O



© 2009 XMOS Ltd.

Resource Identifiers

• 32 bit value which uniquely identifiers a 
resource

• Used as operand to resource instructions
• Passed around as variable between functions

– timer t;

– port p;

– chanend c;



© 2009 XMOS Ltd.

I/O operations

• Basic operations
– Input

• Sample value from a port
• Read the current time
• Receive data from a channel

– Output
• Drive a value on a port
• Output data to a channel



© 2009 XMOS Ltd.

Port I/O Example

#include <res.h>

// Wait for value on pins to change
unsigned wait_for_transition(port p) {
  unsigned value = port_input(p);
  return port_input_ne(p, value);
}



© 2009 XMOS Ltd.

Port I/O Example

#include <res.h>

// Wait for value on pins to change
unsigned wait_for_transition(port p) {
  unsigned value = port_input(p);
  return port_input_ne(p, value);
}

# Unconditional input from port
setc res[r0], COND_NONE
in r1, res[r0]
# Conditional input on t
setc res[r0], COND_NE
setd res[r0], r1
in r0, res[r0]



© 2009 XMOS Ltd.

I/O instructions

• setc instruction
– Sets the port's condition register

• setd instruction
– Sets the port's data register

• in instruction
– Performs an input
– Type of input depends on port state
– Thread blocks until the input can be completed



© 2009 XMOS Ltd.

Adding intrinsics

• Clang builtins
– unsigned port_input(unsigned p);
– unsigned port_input_ne(unsigned p, unsigned value);

• LLVM intriniscs
– llvm.xcore.in
– llvm.xcore.setc
– llvm.xcore.setd

• XCore backend
– llvm.xcore.in → in
– llvm.xcore.setc → setc
– llvm.xcore.setd → setd



© 2009 XMOS Ltd.

State optimisations

• Port state is persistent
• Redundant state setting instructions can be 

eliminated
call void @llvm.xcore.setc(i32 %p, i32 9)
call i32 @llvm.xcore.in(i32 %p)
call void @llvm.xcore.setc(i32 %p, i32 9)
call i32 @llvm.xcore.in(i32 %p)

loop:
call void @llvm.xcore.setc(i32 %p, i32 9)
call i32 @llvm.xcore.in(i32 %p)
br label %loop

• Loop invariant state can be hoisted



© 2009 XMOS Ltd.

Event driven programming

• An input waits until a single resource is ready
• Architecture also supports waiting for one out of 

a number resources becomes ready



© 2009 XMOS Ltd.

Select statement

select {

case now = timer_input_after(t, time):

  break;

case port_input_eq(p, 1):

  break;

}

• Case expression must be

– input builtin

– assignment with input builtin as RHS

• Thread pauses until one of the cases is ready

• Control jumps to the case label and that input is completed



© 2009 XMOS Ltd.

Select statement

clre
setc res[r0], COND_EQ
setd res[r0], 1
eeu res[r0]
setv res[r0], case0
setc res[r1], COND_AFTER
setd res[r1], r2
setv res[r1], case1
eeu res[r1]
waiteu

case0:
in r11, res[r0]
... 
case 1:
in r11, res[r1]

• The eeu instruction configures a 
resource to event when it is ready 
for input

• The setv instruction provides a 
vector to jump to when an event on 
the resource is taken

• The waiteu instructions pauses the 
thread until an event occurs



© 2009 XMOS Ltd.

Modelling select in IR

• Problem: It is not possible not take the address of a 
basic block in the LLVM IR

• Observation: The control flow for a select is similar 
to a switch

• i32 llvm.xcore.select(...)
– Takes a variable number of resources
– Returns a integer which is the position in the 

list of arguments of the resource which first 
become ready 



© 2009 XMOS Ltd.

Select IR Example

  call void @llvm.xcore.setc(i32 %t, i32 9)
  call void @llvm.xcore.setd(i32 %d, i32 %timeout)
  call void @llvm.xcore.setc(i32 %p, i32 17)
  call void @llvm.xcore.setd(i32 %p, i32 1)
  %0 = call i32 (...)* @llvm.xcore.select(i32 %t, i32 %p)
  switch i32 %0, label %sel.epilog [
    i32 0, label %case0
    i32 1, label %case1
  ]

case0:
  %1 = call i32 @llvm.xcore.in(i32 %t)
  ...

case1:
  %2 = call i32 @llvm.xcore.in(i32 %p)
  ...



© 2009 XMOS Ltd.

Lowering select

• Custom lowering implemented for switch with 
llvm.xcore.select argument

clre
setv res[r0], case0
setv res[r1], case1
waiteu

%0 = call i32 (...)* @llvm.xcore.select(i32 %t, i32 %p)
switch i32 %0, label %sel.epilog [
  i32 0, label %sel.bb
  i32 1, label %sel.bb1
]



© 2009 XMOS Ltd.

Limitations

• Each resource must be listed as argument of 
llvm.xcore.select

• Impossible to select over an array of resources

select {
case (i = 0; i < n; i++) port_eq(p[i], x):
  break;
}



© 2009 XMOS Ltd.

Wishlist

• Allow taking address of basic block in LLVM IR
• Allow indirect jump to basic block.

– Possible targets listed on instruction



© 2009 XMOS Ltd.

Conclusion

• Most I/O operations easily modelled using 
intrinsics

• Selects can be modelled as a switch 
implemented in hardware

– Number of resources in the select must be known 
at compile time

• Current implementation does not support 
selecting on arrays of resources



© 2009 XMOS Ltd.

Questions?


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

