
1

Connecting the EDG 

front-end to LLVM
Renato Golin, Evzen Muller,

Jim MacArthur, Al Grant

ARM Ltd.



2

Outline

 Why EDG

 Producing IR

 ARM support



3

EDG Front-End

 LLVM already has two good C++ front-ends, why add yet 

another one? 

 We already use EDG in our compiler and would like to know how 

LLVM would support all EDG features and extensions (plus our 

modifications), at both IR and CodeGen levels

 EDG supports the complete set of C/C++ standards (all 

versions), plus many features of the new standard (C++0x)

 It's feature stable; newer versions of the compiler should still 

compile old code the same way

 Including extensions, platform choices

 Consistent error reports (especially with warnings as errors)

 Some ARM customers can’t use GCC (GPLv3) and Clang is still 

immature



4

EDG Front-End

 The benefits for the LLVM community are:

 Cross-checking IR/code generation against a different front-end

 It’s a fresh set of eyes on the same problems

 We found some CodeGen bugs (some patches sent)

 We found problems in structures, unions, bitfields

 As well as NEON, Exception Handling, Run-Time ABI

 We tested using vectors instead of structures for NEON

 So far, it’s generating good code

 Extend IR/code generation support for the additional features, 

mainly EABI

 Some EDG users are asking about the bridge...



5

EDG + LLVM

 Why EDG

 Producing IR

 ARM support



6

General Impressions

 LLVM is a great platform to work on

 It’s easy to generate IR / Metadata

 Good IR validation infrastructure

 Asserts get most of the consistency problems

 Coding standard is well thought of and modern

 Makes good use of C++ capabilities

 Consistent, frequently refactored

 Has good ways to debug (dump, viewGraph)

 Generated code quality is good

 Good support for ARM architectures



7

Type System

 Sign information

 EDG has it on type, easier for front-end 

development

 LLVM has it on instructions, easier for code-

generation

 We need to keep track to do casts, widening...

 Ex: sext, zext, uitofp, sitofp

 ...comparison functions

 Ex: icmp uge vs. icmp sge



8

Type System

 Default alignment in EDG:

 Type and variable alignment

 Variable overrides type alignment

 Structure and Union alignment

 Alignment in LLVM on instructions, globals, allocas

 Default alignment comes from Data Layout

 Special cases (structures, unions, bitfields) have to 

be carefully hand-crafted

 Still, alignment in instructions are necessary to 

make bitfields work properly

 Throw away EDG info and partially reconstruct later



9

Type System

 Automatic C casting

 EDG sometimes relies on C’s implicit conversions

 Mostly on type promotions

 LLVM doesn’t accept any implicit cast

 Adding non trivial helpers to avoid bloating the IR

 Fiddling with types and sizes to determine the 

expected implicit cast

 Caused many LLVM failures by being too 

permissive or getting the cast wrong

 Took us a while to be auto-cast free, but it was 

worth it



10

C++ support

 C++ support was fairly simple

 EDG lowers C++ into C, so most support was 

already present

 Easier parts were

 Classes became structures, virtual functions 

became calls to pointers in an array

 Static construction/destruction identical to LLVM

 Bigger problems were

 Exception Handling (no EHABI)

 EDG storage class doesn’t map directly to LLVM 

linkage type (some magic was required)

 Explicit allocation of parameters (thunks and other)



11

Structures

 Argument passing

 Code generated for Struct ByVal is not EABI 

compliant

 Missing feature in ARM’s backend for structures

 Following Clang’s example, converting structures to 

arrays, which gets correctly lowered as ByVal

 Return Value

 Indirect return has the same problem, as it becomes 

the first argument



12

Unions

 Unions are target-dependent from the front-end

 Lots of flames, but most agree it could be better

 The number of work-arounds to make it conform to 

the C++ standard is quite big

 Create N structure types (for N initialisers)

 Cast to i8 arrays, memcpy, and back

 Keep track of alignment when doing so

 Static initialization and alignment pose the worst 

problems

 Implementing it in the back-end might require several 

changes

 All targets must change simultaneously



13

Bitfields

 Zero-sized anonymous bitfields

 In the C standard, bitfields finish the packing of the 

previous field

 Armcc also uses it for general structure alignment

 But this cannot be easily represented in LLVM IR

 For example:

 Maybe consider introducing i0 integer type?

struct A {
int :0;
char a;

} S;

compiler GCC x86 Clang ARM Armcc GCC ARM

sizeof(S) 1 1 4 4



14

Exception Handling

 ARM EHABI exception handling has not (yet) been 

implemented

 Plans to support it in MC in the near future

 DwarfException.cpp cannot be changed nicely to support 

EHABI; Any change will be considerably invasive

 We have no ELF writer for ARM

 Codesourcery’s GAS doesn’t understand the tables

 Need to export it to different ELF sections

 Need to support Generic and Compact EHABI

 There are solutions

 Implement EHABI in MC

 Write Dwarf exceptions directly to ELF



15

NEON

 NEON instructions are fully(?) represented in TableGen

 Some instructions can be represented via pattern-

matching, others via intrinsics:

 add(zext, zext) = VADDL.U*

 @llvm.arm.neon.vhadds.*() = VHADD.S*

 @...vabds.*() + add = VABA.S*

 arm_neon.h in Clang reflects those choices

 But neither ARM’s nor GCC’s arm_neon.h do

 Structures vs. Vectors in NEON type representation

 Source compatibility is important, but the front-end 

can recognize NEON structures and transform them 

into vectors in IR (we do that)



16

Suggestions

 Add target attributes in IR header

 Some generic enough to be used by any back-end

 Could the union type benefit from this?

 Some target specific

 Like build attributes for ARM

 Add validation to the debug data in IR

 MDNode* is too opaque for validation

 Helper classes are too simple, but could do basic 

validation

 Unions? Bitfields?

 EABI Struct ByVal?



17

Architecture Support

 Why EDG

 Producing IR

 ARM support



18

Architectures supported

 We tested Dhrystone on all supported architectures

 v4 to v7 (A, R, M)

 ARM, Thumb

 Soft and Hard FP, NEON

 Specific instructions (like SMUL)

 Our internal tests run mainly on 7TDMI and Cortex-A8

 NEON tests in early stages

 Almost all intrinsics get compiled to NEON 

instructions correctly

 We reported some errors in bugzilla



19

Still missing

 EABI support

 We’ve added some RT-ABI (FP, REM and Memset)

 But there are still things to do (Ex. EHABI, AAELF)

 MC support

 Refactor ARM MC to be less ASM-focused

 ARM ELF

 Exception Handling

 ARM ASM dialect?



20

Questions?


