
1

Connecting the EDG 

front-end to LLVM
Renato Golin, Evzen Muller,

Jim MacArthur, Al Grant

ARM Ltd.



2

Outline

 Why EDG

 Producing IR

 ARM support



3

EDG Front-End

 LLVM already has two good C++ front-ends, why add yet 

another one? 

 We already use EDG in our compiler and would like to know how 

LLVM would support all EDG features and extensions (plus our 

modifications), at both IR and CodeGen levels

 EDG supports the complete set of C/C++ standards (all 

versions), plus many features of the new standard (C++0x)

 It's feature stable; newer versions of the compiler should still 

compile old code the same way

 Including extensions, platform choices

 Consistent error reports (especially with warnings as errors)

 Some ARM customers can’t use GCC (GPLv3) and Clang is still 

immature



4

EDG Front-End

 The benefits for the LLVM community are:

 Cross-checking IR/code generation against a different front-end

 It’s a fresh set of eyes on the same problems

 We found some CodeGen bugs (some patches sent)

 We found problems in structures, unions, bitfields

 As well as NEON, Exception Handling, Run-Time ABI

 We tested using vectors instead of structures for NEON

 So far, it’s generating good code

 Extend IR/code generation support for the additional features, 

mainly EABI

 Some EDG users are asking about the bridge...



5

EDG + LLVM

 Why EDG

 Producing IR

 ARM support



6

General Impressions

 LLVM is a great platform to work on

 It’s easy to generate IR / Metadata

 Good IR validation infrastructure

 Asserts get most of the consistency problems

 Coding standard is well thought of and modern

 Makes good use of C++ capabilities

 Consistent, frequently refactored

 Has good ways to debug (dump, viewGraph)

 Generated code quality is good

 Good support for ARM architectures



7

Type System

 Sign information

 EDG has it on type, easier for front-end 

development

 LLVM has it on instructions, easier for code-

generation

 We need to keep track to do casts, widening...

 Ex: sext, zext, uitofp, sitofp

 ...comparison functions

 Ex: icmp uge vs. icmp sge



8

Type System

 Default alignment in EDG:

 Type and variable alignment

 Variable overrides type alignment

 Structure and Union alignment

 Alignment in LLVM on instructions, globals, allocas

 Default alignment comes from Data Layout

 Special cases (structures, unions, bitfields) have to 

be carefully hand-crafted

 Still, alignment in instructions are necessary to 

make bitfields work properly

 Throw away EDG info and partially reconstruct later



9

Type System

 Automatic C casting

 EDG sometimes relies on C’s implicit conversions

 Mostly on type promotions

 LLVM doesn’t accept any implicit cast

 Adding non trivial helpers to avoid bloating the IR

 Fiddling with types and sizes to determine the 

expected implicit cast

 Caused many LLVM failures by being too 

permissive or getting the cast wrong

 Took us a while to be auto-cast free, but it was 

worth it



10

C++ support

 C++ support was fairly simple

 EDG lowers C++ into C, so most support was 

already present

 Easier parts were

 Classes became structures, virtual functions 

became calls to pointers in an array

 Static construction/destruction identical to LLVM

 Bigger problems were

 Exception Handling (no EHABI)

 EDG storage class doesn’t map directly to LLVM 

linkage type (some magic was required)

 Explicit allocation of parameters (thunks and other)



11

Structures

 Argument passing

 Code generated for Struct ByVal is not EABI 

compliant

 Missing feature in ARM’s backend for structures

 Following Clang’s example, converting structures to 

arrays, which gets correctly lowered as ByVal

 Return Value

 Indirect return has the same problem, as it becomes 

the first argument



12

Unions

 Unions are target-dependent from the front-end

 Lots of flames, but most agree it could be better

 The number of work-arounds to make it conform to 

the C++ standard is quite big

 Create N structure types (for N initialisers)

 Cast to i8 arrays, memcpy, and back

 Keep track of alignment when doing so

 Static initialization and alignment pose the worst 

problems

 Implementing it in the back-end might require several 

changes

 All targets must change simultaneously



13

Bitfields

 Zero-sized anonymous bitfields

 In the C standard, bitfields finish the packing of the 

previous field

 Armcc also uses it for general structure alignment

 But this cannot be easily represented in LLVM IR

 For example:

 Maybe consider introducing i0 integer type?

struct A {
int :0;
char a;

} S;

compiler GCC x86 Clang ARM Armcc GCC ARM

sizeof(S) 1 1 4 4



14

Exception Handling

 ARM EHABI exception handling has not (yet) been 

implemented

 Plans to support it in MC in the near future

 DwarfException.cpp cannot be changed nicely to support 

EHABI; Any change will be considerably invasive

 We have no ELF writer for ARM

 Codesourcery’s GAS doesn’t understand the tables

 Need to export it to different ELF sections

 Need to support Generic and Compact EHABI

 There are solutions

 Implement EHABI in MC

 Write Dwarf exceptions directly to ELF



15

NEON

 NEON instructions are fully(?) represented in TableGen

 Some instructions can be represented via pattern-

matching, others via intrinsics:

 add(zext, zext) = VADDL.U*

 @llvm.arm.neon.vhadds.*() = VHADD.S*

 @...vabds.*() + add = VABA.S*

 arm_neon.h in Clang reflects those choices

 But neither ARM’s nor GCC’s arm_neon.h do

 Structures vs. Vectors in NEON type representation

 Source compatibility is important, but the front-end 

can recognize NEON structures and transform them 

into vectors in IR (we do that)



16

Suggestions

 Add target attributes in IR header

 Some generic enough to be used by any back-end

 Could the union type benefit from this?

 Some target specific

 Like build attributes for ARM

 Add validation to the debug data in IR

 MDNode* is too opaque for validation

 Helper classes are too simple, but could do basic 

validation

 Unions? Bitfields?

 EABI Struct ByVal?



17

Architecture Support

 Why EDG

 Producing IR

 ARM support



18

Architectures supported

 We tested Dhrystone on all supported architectures

 v4 to v7 (A, R, M)

 ARM, Thumb

 Soft and Hard FP, NEON

 Specific instructions (like SMUL)

 Our internal tests run mainly on 7TDMI and Cortex-A8

 NEON tests in early stages

 Almost all intrinsics get compiled to NEON 

instructions correctly

 We reported some errors in bugzilla



19

Still missing

 EABI support

 We’ve added some RT-ABI (FP, REM and Memset)

 But there are still things to do (Ex. EHABI, AAELF)

 MC support

 Refactor ARM MC to be less ASM-focused

 ARM ELF

 Exception Handling

 ARM ASM dialect?



20

Questions?


