
libc++: A Standard Library for C++0x

2010 LLVM Developers’ Meeting

Why?

• Another C++ standard library?

Why?

• Another C++ standard library?
• The C++0x spec introduces several fundamentally new ideas

at the language level.
• Move semantics
• Perfect forwarding
• Variadic templates

Why?

• libc++ is designed from the ground up to take advantage
of these new language features.
• This is not a C++0X implementation layered on top of a

C++03 implementation.
• It has been a C++0X implementation from the

beginning.
• This has driven several low-level design decisions.

Why?

Overall Design

libstdc++ (gcc) Interoperability

Application

DLL 1 DLL 2

libstdc++libc++

libstdc++ (gcc) Interoperability

• We expect that both libc++
and libstdc++ will end up in
the same application.

Application

DLL 1 DLL 2

libstdc++libc++

libstdc++ (gcc) Interoperability

• We expect that both libc++
and libstdc++ will end up in
the same application.

• libc++ is versioned using
inline namespaces so that
ABI-incompatible objects can
not accidentally be mistaken
for one another.

Application

DLL 1 DLL 2

libstdc++libc++

libstdc++ (gcc) Interoperability

• We expect that both libc++
and libstdc++ will end up in
the same application.

• libc++ is versioned using
inline namespaces so that
ABI-incompatible objects can
not accidentally be mistaken
for one another.

• Some low-level facilities are
not versioned, and are ABI-
compatible with libstdc++.

Application

DLL 1 DLL 2

libstdc++libc++

libstdc++ (gcc) Interoperability

• We expect that both libc++
and libstdc++ will end up in
the same application.

• libc++ is versioned using
inline namespaces so that
ABI-incompatible objects can
not accidentally be mistaken
for one another.

• Some low-level facilities are
not versioned, and are ABI-
compatible with libstdc++.
– Operator new/delete

Application

DLL 1 DLL 2

libstdc++libc++

libstdc++ (gcc) Interoperability

• We expect that both libc++
and libstdc++ will end up in
the same application.

• libc++ is versioned using
inline namespaces so that
ABI-incompatible objects can
not accidentally be mistaken
for one another.

• Some low-level facilities are
not versioned, and are ABI-
compatible with libstdc++.
– Operator new/delete
– Exceptions

Application

DLL 1 DLL 2

libstdc++libc++

libc++ <headers>

libc++ <headers>

• Every public header begins with a synopsis of that header in
comments (a quick reference).

libc++ <headers>

• Every public header begins with a synopsis of that header in
comments (a quick reference).

• Every header that is not a public header has a name
beginning with “__” (e.g. <__hash_table>).

libc++ <headers>

• Every public header begins with a synopsis of that header in
comments (a quick reference).

• Every header that is not a public header has a name
beginning with “__” (e.g. <__hash_table>).

• The number of private headers is kept to a minimum to
enable faster compile times.
– A private header is only introduced when needed to

break cyclic dependencies, or to factor out code needed in
two places.

libc++ <headers>

• Every public header begins with a synopsis of that header in
comments (a quick reference).

• Every header that is not a public header has a name
beginning with “__” (e.g. <__hash_table>).

• The number of private headers is kept to a minimum to
enable faster compile times.
– A private header is only introduced when needed to

break cyclic dependencies, or to factor out code needed in
two places.

– Headers are not used to “moduralize” code.
– All of the regular expression library is in <regex>.
– All of the random number library is in <random>.
– etc.

The Build System

The Build System

• The build system is purposefully simplistic.
– Downright primitive!

The Build System

• The build system is purposefully simplistic.
– Downright primitive!
– You don’t need to build llvm or clang to build libc++.

The Build System

• The build system is purposefully simplistic.
– Downright primitive!
– You don’t need to build llvm or clang to build libc++.
– No configure.
– Configuration is accomplished via the header <__config>.

The Build System

• Consequently the entire library builds in 45–60 seconds.

• The build system is purposefully simplistic.
– Downright primitive!
– You don’t need to build llvm or clang to build libc++.
– No configure.
– Configuration is accomplished via the header <__config>.

The Test System

The Test System

• Every single sub-section in the C++0X draft standard is
represented by a test subdirectory.

The Test System

• Every single sub-section in the C++0X draft standard is
represented by a test subdirectory.

• The draft standard section hierarchy is mirrored in the libc++
test directory.

The Test System

• Every single sub-section in the C++0X draft standard is
represented by a test subdirectory.

• The draft standard section hierarchy is mirrored in the libc++
test directory.

• If a test subdirectory has no tests in it, the libc++ test harness
counts that part of the library as unimplemented.

The Test System

• Every single sub-section in the C++0X draft standard is
represented by a test subdirectory.

• The draft standard section hierarchy is mirrored in the libc++
test directory.

• If a test subdirectory has no tests in it, the libc++ test harness
counts that part of the library as unimplemented.

• The test harness is purposefully simplistic…
– $ cd test; testit

The Test System

• Every single sub-section in the C++0X draft standard is
represented by a test subdirectory.

• The draft standard section hierarchy is mirrored in the libc++
test directory.

• If a test subdirectory has no tests in it, the libc++ test harness
counts that part of the library as unimplemented.

• The test harness is purposefully simplistic…
– $ cd test; testit

• One can cd into any subdirectory and run the tests just for
that section and its subdirectories.
– $ cd <where ever>; testit

A Few libc++
Examples of Excellence…

string

string

• Not reference counted:
– No atomic increment/decrement

string

• Not reference counted:
– No atomic increment/decrement

• Fast default constructor:
– The default constructed string can

hold up to 22 chars before needing
to allocate memory (on 64-bit platforms)

string

• Not reference counted:
– No atomic increment/decrement

• Fast default constructor:
– The default constructed string can

hold up to 22 chars before needing
to allocate memory (on 64-bit platforms)

movq	 $0, (%rdi)
movq	 $0, 8(%rdi)
movq	 $0, 16(%rdi)

string

• Not reference counted:
– No atomic increment/decrement

• Fast default constructor:
– The default constructed string can

hold up to 22 chars before needing
to allocate memory (on 64-bit platforms)

• Fast move constructor:
– Copy 3 words, zero 3 words.
– No branching, no allocation.

movq	 $0, (%rdi)
movq	 $0, 8(%rdi)
movq	 $0, 16(%rdi)

string

• Not reference counted:
– No atomic increment/decrement

• Fast default constructor:
– The default constructed string can

hold up to 22 chars before needing
to allocate memory (on 64-bit platforms)

• Fast move constructor:
– Copy 3 words, zero 3 words.
– No branching, no allocation.

• This design considered the importance of move semantics
from the beginning: minimum sizeof leads to faster moving.

movq	 $0, (%rdi)
movq	 $0, 8(%rdi)
movq	 $0, 16(%rdi)

Allocator Aware Containers

Allocator Aware Containers

• All dynamically sized containers have an O(1), non-throwing
default constructor—extremely fast.
– Embedded sentinel nodes for all node-based containers that

require a sentinel node.

Allocator Aware Containers

• All dynamically sized containers have an O(1), non-throwing
default constructor—extremely fast.
– Embedded sentinel nodes for all node-based containers that

require a sentinel node.
• All containers meet all of the latest allocator requirements

which fully support stateful allocators.
– Space for stateless allocators optimized away.

Allocator Aware Containers

• All dynamically sized containers have an O(1), non-throwing
default constructor—extremely fast.
– Embedded sentinel nodes for all node-based containers that

require a sentinel node.
• All containers meet all of the latest allocator requirements

which fully support stateful allocators.
– Space for stateless allocators optimized away.

• Associative containers optimize away the space for stateless
comparators (and stateless hash functions for the unordered
containers).

libc++ vs g++-4.2 libstdc++
(64 bit platform)

deque<int> libc++ libstdc++

sizeof

Default ctor allocation

48 bytes 80 bytes

0 bytes 576 bytes

libc++ vs g++-4.2 libstdc++
(64 bit platform)

map<int, int> libc++ libstdc++

sizeof

Default ctor allocation

24 bytes 48 bytes

0 bytes 0 bytes

libc++ vs g++-4.2 libstdc++
(64 bit platform)

unordered_map<int, int> libc++ libstdc++

sizeof

Default ctor allocation

40 bytes 48 bytes

0 bytes 96 bytes

libc++ vs g++-4.2 libstdc++
(64 bit platform)

sort

sort

• Fast
– Never copies, only

swaps or moves.

sort

• Fast
– Never copies, only

swaps or moves.
– Automatically

recognizes and
adapts to patterns.

All Equal

Sorted

Reverse

Even/Odd

Reverse Even/Odd

Pipe Organ

Push Front

Push Middle

Random

0 6 12 18 24 30

libstdc++
libc++

seconds

sort

• Fast
– Never copies, only

swaps or moves.
– Automatically

recognizes and
adapts to patterns.

All Equal

Sorted

Reverse

Even/Odd

Reverse Even/Odd

Pipe Organ

Push Front

Push Middle

Random

0 6 12 18 24 30

libstdc++
libc++

seconds

sort

• Fast
– Never copies, only

swaps or moves.
– Automatically

recognizes and
adapts to patterns.

All Equal

Sorted

Reverse

Even/Odd

Reverse Even/Odd

Pipe Organ

Push Front

Push Middle

Random

0 6 12 18 24 30

libstdc++
libc++

seconds

sort

• Fast
– Never copies, only

swaps or moves.
– Automatically

recognizes and
adapts to patterns.

All Equal

Sorted

Reverse

Even/Odd

Reverse Even/Odd

Pipe Organ

Push Front

Push Middle

Random

0 6 12 18 24 30

libstdc++
libc++

seconds

sort

• Fast
– Never copies, only

swaps or moves.
– Automatically

recognizes and
adapts to patterns.

All Equal

Sorted

Reverse

Even/Odd

Reverse Even/Odd

Pipe Organ

Push Front

Push Middle

Random

0 6 12 18 24 30

libstdc++
libc++

seconds

sort

• Fast
– Never copies, only

swaps or moves.
– Automatically

recognizes and
adapts to patterns.

All Equal

Sorted

Reverse

Even/Odd

Reverse Even/Odd

Pipe Organ

Push Front

Push Middle

Random

0 6 12 18 24 30

libstdc++
libc++

seconds

sort

• Fast
– Never copies, only

swaps or moves.
– Automatically

recognizes and
adapts to patterns.

All Equal

Sorted

Reverse

Even/Odd

Reverse Even/Odd

Pipe Organ

Push Front

Push Middle

Random

0 6 12 18 24 30

libstdc++
libc++

seconds

sort

• Fast
– Never copies, only

swaps or moves.
– Automatically

recognizes and
adapts to patterns.

All Equal

Sorted

Reverse

Even/Odd

Reverse Even/Odd

Pipe Organ

Push Front

Push Middle

Random

0 6 12 18 24 30

libstdc++
libc++

seconds

sort

• Fast
– Never copies, only

swaps or moves.
– Automatically

recognizes and
adapts to patterns.
– Pattern recognition

isn’t free, but the
cost is quite
reasonable.

All Equal

Sorted

Reverse

Even/Odd

Reverse Even/Odd

Pipe Organ

Push Front

Push Middle

Random

0 6 12 18 24 30

libstdc++
libc++

seconds

New Facilities in C++0x…

Smart Pointers

Smart Pointers

• shared_ptr
– Bullet-proof reference counting.

Smart Pointers

• shared_ptr
– Bullet-proof reference counting.
– Weak references.

Smart Pointers

• shared_ptr
– Bullet-proof reference counting.
– Weak references.
– Can be as efficient as intrusive reference counting.

Smart Pointers

• shared_ptr
– Bullet-proof reference counting.
– Weak references.
– Can be as efficient as intrusive reference counting.

• unique_ptr
– Unique ownership (like auto_ptr).

Smart Pointers

• shared_ptr
– Bullet-proof reference counting.
– Weak references.
– Can be as efficient as intrusive reference counting.

• unique_ptr
– Unique ownership (like auto_ptr).
– Zero overhead.

Smart Pointers

• shared_ptr
– Bullet-proof reference counting.
– Weak references.
– Can be as efficient as intrusive reference counting.

• unique_ptr
– Unique ownership (like auto_ptr).
– Zero overhead.
– Can safely be put into containers and used with algorithms.

Smart Pointers

• shared_ptr
– Bullet-proof reference counting.
– Weak references.
– Can be as efficient as intrusive reference counting.

• unique_ptr
– Unique ownership (like auto_ptr).
– Zero overhead.
– Can safely be put into containers and used with algorithms.
– Custom deallocation support.

Smart Pointers

• shared_ptr
– Bullet-proof reference counting.
– Weak references.
– Can be as efficient as intrusive reference counting.

• unique_ptr
– Unique ownership (like auto_ptr).
– Zero overhead.
– Can safely be put into containers and used with algorithms.
– Custom deallocation support.
– Array support.

<chrono>

<chrono>
Type-safe time arithmetic facilities

<chrono>
Type-safe time arithmetic facilities

• Separate types for time durations and points in time.

<chrono>
Type-safe time arithmetic facilities

• Separate types for time durations and points in time.
• Full suite of common units: hours, minutes…nanoseconds.

<chrono>
Type-safe time arithmetic facilities

• Separate types for time durations and points in time.
• Full suite of common units: hours, minutes…nanoseconds.
• Add and subtract durations and time points with

natural syntax.

system_clock::time_point t0 = system_clock::now();
...
auto t1 = system_clock::now();
nanoseconds ns = t1 - t0;

Much easier and safer than working with
timeval, timespec, or C’s new xtime.

Multithread Support

Multithread Support

• Thread class
– Can launch any functor with arbitrary number of arguments.

Multithread Support

• Thread class
– Can launch any functor with arbitrary number of arguments.

• mutexes

Multithread Support

• Thread class
– Can launch any functor with arbitrary number of arguments.

• mutexes
• Condition variables

Multithread Support

• Thread class
– Can launch any functor with arbitrary number of arguments.

• mutexes
• Condition variables
• Deadlock-free multi-lock algorithms

Multithread Support

• Thread class
– Can launch any functor with arbitrary number of arguments.

• mutexes
• Condition variables
• Deadlock-free multi-lock algorithms
• Futures

Multithread Support

• Thread class
– Can launch any functor with arbitrary number of arguments.

• mutexes
• Condition variables
• Deadlock-free multi-lock algorithms
• Futures

– Ability to get a return value from a thread.
• Everything works with the new <chrono> facility for timed

locking, timed sleeping, etc.

<random>

<random>

• If it has anything to do with random number generation,
it is here:

<random>

• If it has anything to do with random number generation,
it is here:
– Six different random number generator generators, each

templated on “tweaking” parameters.

<random>

• If it has anything to do with random number generation,
it is here:
– Six different random number generator generators, each

templated on “tweaking” parameters.
– Nine concrete random number generators.

– e.g. mt19937 and knuth_b

<random>

• If it has anything to do with random number generation,
it is here:
– Six different random number generator generators, each

templated on “tweaking” parameters.
– Nine concrete random number generators.

– e.g. mt19937 and knuth_b
– Twenty (yes 20!) random number distributions:

– uniform_real_distribution
– bernoulli_distribution
– gamma_distribution
– fisher_f_distribution
– etc.

<regex>

<regex>

• If it has anything to do with regular expressions, it is here:

<regex>

• If it has anything to do with regular expressions, it is here:
– Both Perl and POSIX style search engines.

– Multiple flavors of both.

<regex>

• If it has anything to do with regular expressions, it is here:
– Both Perl and POSIX style search engines.

– Multiple flavors of both.
– Many options, including case (in)sensitivity.

<regex>

• If it has anything to do with regular expressions, it is here:
– Both Perl and POSIX style search engines.

– Multiple flavors of both.
– Many options, including case (in)sensitivity.
– Full locale support for case mapping, character equivalence,

and collation.

<regex>

• If it has anything to do with regular expressions, it is here:
– Both Perl and POSIX style search engines.

– Multiple flavors of both.
– Many options, including case (in)sensitivity.
– Full locale support for case mapping, character equivalence,

and collation.
– Full results data structure including list of matched

sub-expressions.

<regex>

• If it has anything to do with regular expressions, it is here:
– Both Perl and POSIX style search engines.

– Multiple flavors of both.
– Many options, including case (in)sensitivity.
– Full locale support for case mapping, character equivalence,

and collation.
– Full results data structure including list of matched

sub-expressions.
– Exact match, search and search/replace algorithms.

<regex>

• If it has anything to do with regular expressions, it is here:
– Both Perl and POSIX style search engines.

– Multiple flavors of both.
– Many options, including case (in)sensitivity.
– Full locale support for case mapping, character equivalence,

and collation.
– Full results data structure including list of matched

sub-expressions.
– Exact match, search and search/replace algorithms.
– Full iterator support for iterating to the next match, and for

tokenizing keywords/expressions out of a stream.

Miscellaneous

Miscellaneous

• <type_traits>
– Compile-time testing and introspection of types.

Miscellaneous

• <type_traits>
– Compile-time testing and introspection of types.

• <ratio>
– Compile-time rational arithmetic.

Miscellaneous

• <type_traits>
– Compile-time testing and introspection of types.

• <ratio>
– Compile-time rational arithmetic.

• <tuple>
– pair on steroids.
– Implements empty member optimization as an extension.
– Currently requires variadic templates and rvalue reference.

Wrap Up…

How to Use libc++ from clang

How to Use libc++ from clang

• $ clang++ -stdlib=libc++ test.cpp

How to Use libc++ from clang

• $ clang++ -stdlib=libc++ test.cpp
• Currently requires libc++abi on Snow Leopard.

How to Use libc++ from clang

• $ clang++ -stdlib=libc++ test.cpp
• Currently requires libc++abi on Snow Leopard.

– Unsupported preview here:
– http://home.roadrunner.com/~hinnant/libcppabi.zip

http://home.roadrunner.com/~hinnant/libcppabi.zip
http://home.roadrunner.com/~hinnant/libcppabi.zip

How to Use libc++ from clang

• $ clang++ -stdlib=libc++ test.cpp
• Currently requires libc++abi on Snow Leopard.

– Unsupported preview here:
– http://home.roadrunner.com/~hinnant/libcppabi.zip

• Future: We would like to run on top of gcc’s libsupc++ in
addition to libc++abi.

http://home.roadrunner.com/~hinnant/libcppabi.zip
http://home.roadrunner.com/~hinnant/libcppabi.zip

libc++ Status

libc++ Status

• Every major feature of C++0x has been implemented except
<atomic>. And that is in progress.

libc++ Status

• Every major feature of C++0x has been implemented except
<atomic>. And that is in progress.

• Every feature is backed by unit tests.

libc++ Status

• Every major feature of C++0x has been implemented except
<atomic>. And that is in progress.

• Every feature is backed by unit tests.
• Lacking the following features:

– Make use of some language features such as constexpr and
delegating constructors.

libc++ Status

• Every major feature of C++0x has been implemented except
<atomic>. And that is in progress.

• Every feature is backed by unit tests.
• Lacking the following features:

– Make use of some language features such as constexpr and
delegating constructors.

– Ability to run on top of libsupc++.

libc++ Status

• Every major feature of C++0x has been implemented except
<atomic>. And that is in progress.

• Every feature is backed by unit tests.
• Lacking the following features:

– Make use of some language features such as constexpr and
delegating constructors.

– Ability to run on top of libsupc++.
– Debug mode

libc++ Status

• Every major feature of C++0x has been implemented except
<atomic>. And that is in progress.

• Every feature is backed by unit tests.
• Lacking the following features:

– Make use of some language features such as constexpr and
delegating constructors.

– Ability to run on top of libsupc++.
– Debug mode
– Performance tests

libc++ Status

• Every major feature of C++0x has been implemented except
<atomic>. And that is in progress.

• Every feature is backed by unit tests.
• Lacking the following features:

– Make use of some language features such as constexpr and
delegating constructors.

– Ability to run on top of libsupc++.
– Debug mode
– Performance tests
– Porting to more platforms

Summary

Summary

• libc++ is a largely complete C++0x standard library with a
very lenient open source license.

Summary

• libc++ is a largely complete C++0x standard library with a
very lenient open source license.

• libc++ is high performance.

Summary

• libc++ is a largely complete C++0x standard library with a
very lenient open source license.

• libc++ is high performance.
• libc++ is full featured.

Summary

• libc++ is a largely complete C++0x standard library with a
very lenient open source license.

• libc++ is high performance.
• libc++ is full featured.
• libc++ is here today:

– http://libcxx.llvm.org/

