
The Crack Scripting Language
Because Life is too Short to Wait for Software

http://www.mindhog.net/pub/CrackScriptingLanguage

Slide -1 Slide 1

What is It?

Crack

A C/C++/Java-like Scripting Language.

Speed of a compiled language, ease of use of a scripting language.

Slide 0 Slide 2

History

First conception of "a scripting language that compiles to machine code" in the mid nineties.

Experimental language in 2001ish (built on GNU Lightning, called it "thunder" -> "crack")

Work on the current language began in September 2009.

Released 0.1 in mid-July 2010

Released 0.2 at the beginning of October

Slide 1 Slide 3

Other Scripting Languages that Compile to Machine Code

Python has "Unladen Sparrow" (Built on LLVM)

Ruby has "Rubinius" (Also built on LLVM)

JavaScript has V8 and TraceMonkey (and probably others)

PHP has "HipHop" and RoadSend.

Slide 2 Slide 4

Dynamic Attributes and Typing

Pros:

Users don't have to specify types (decreased verbosity).

Duck-typing (types must conform to well defined interfaces)

Cons:

Complicates the compiler.

Less protection, problems are discovered at runtime.

Interfaces are less obvious.

Slide 3 Slide 5

Crack - Guiding Principals

Everything should be fast.

Common things should be terse.

"Use the existing wiring" for C/C++/Java programmers.

Slide 4 Slide 6

The Language

Hello World

 #!/usr/bin/crack
 import crack.io cout;
 cout `hello world\n`;

Slide 5 Slide 7

Comments

C, C++ and Shell style comments are all supported:

 /* C-Style */
 // C++ style
 # shell style

Slide 6 Slide 8

Primitive Types

 byte b;
 int32 i;
 int64 j;
 uint32 u;
 uint64 v;
 int k;
 uint w;
 bool x;
 void f() {}

Slide 7 Slide 9

Primitive Pointer Types

 byteptr ptr; // an array of bytes
 voidptr v; // for comparison with null

Slide 8 Slide 10

Primitive Arrays

 array[int] arr = array[int](100);
 arr[0] = 10;
 arr[1] = 20;

Slide 9 Slide 11

Aggregate Types

 String s = "this is a string"; // a string of bytes

 class Soldier {
 String name;
 int rank;
 };

Slide 10 Slide 12

Avoiding Verbosity

Simplifying Construction and Definition

In Java:

 BigClassName variable = new BigClassName();

In Crack:

 variable := BigClassName(); // ... or
 BigClassName variable = {}; // ... or
 BigClassName variable; // hmmmm... maybe not.

Slide 11 Slide 13

Avoiding Verbosity

Efficient Construction of Collections:

 List[Int] list = [1, 2, 3, 4];

Type Inferencing:

 class A { oper init(int x, int y) { ... } }
 void foo(A a) { ... }
 foo({1, 2}); // same as foo(A(1, 2));

Iteration:

 for (x :in list)
 doSomethingWith(x);

Slide 12 Slide 14

String Interpolation

 a := 1;
 b := 2;
 cout `$a + $b = $(a + b)\n`;
 // prints "1 + 2 = 3"

Slide 13 Slide 15

String Interpolation

 cout `$a + $b = $(a + b)\n`;

Is syntactic sugar for:

 if (cout) {
 cout.format(a);
 cout.format(" + ");
 cout.format(b);
 cout.format(" = ");
 cout.format(a + b);
 cout.format("\n");
 }

Slide 14 Slide 16

Modules

Like Python or Perl, Crack lets you load common code from modules:

 import crack.io cout, StringFormatter;

 fmt := StringFormatter();
 fmt `hello world\n`;
 cout.write(fmt.createString());

Slide 15 Slide 17

Shared Libraries

Crack lets you import functions from shared libraries, declare and call them:

 import "lib.so.6" abort;
 void abort();
 abort();

Slide 16 Slide 18

Generics

Crack generic syntax will be similar to Java's:

 class List[T : Object] {
 void add(T element) { ... }
 T oper [](uint index) { ... }
 }

Slide 17 Slide 19

Annotations

Crack annotations will be like compiler plugins:

 # annotation to trace when we enter and leave a function
 @myAnnotation
 void func() { ... }

During parsing:

 myAnnotation(context);

Slide 18 Slide 20

Challenges with LLVM

Placeholder instructions.

Single Module vs. Multiple Modules.

Slide 19 Slide 21

The Future of Crack

To become a major (or even a minor) language, Crack needs mindshare.

If you think it's a good idea - we'd love more developers!

Slide 20 Slide 22

References

ref(http://crack-language.googlecode.com/ http://crack-language.googlecode.com/)

Slide 21 Slide 23

