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Applications with NaCl
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Lego Star Wars

Nexuiz
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Where Native Client Started
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Where We Went Next
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x86-32

ARM
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What Developers Want
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x86-32
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x86-64

Only one porting effort
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Approach
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Application Life Cycle
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Client side
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translator
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asynchronously

Thursday, November 4, 2010



Safe Translation
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Translating in a Sandbox

The translator must run in the browser
Malicious bitcode files are a potential attack vector
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Translator phases are run as 
NaCl modules
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Translator
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Translator
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+ Bundling
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Bitcode as an Interchange Format
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Target Model

Address space / data model
ILP32 (sizeof(int) == sizeof(long) == sizeof(void*))
sizeof(va_list) == 24
1GB maximum total address space
Stack pointer starts at the top of the address space

Data types
IEEE fp
“natural” alignment

(e.g., double is aligned 0mod8)

Byte order
Little Endian

28

Thursday, November 4, 2010



Target Model 

C++ Exception Handling
x86-32 Linux model

varargs
sizeof(va_list) == 24
Front end emits va_arg instruction

setjmp
Consistent jmp_buf size (work in progress)

29

Thursday, November 4, 2010



Target Model 

Calling conventions
Bitcode file is calling convention neutral
Actual target convention determined by translator

Concurrency and memory model
Assume a least common denominator

Store ordering within a thread
Explicit synchronization across threads

We expect people to use llvm atomic/barrier intrinsics 
where needed
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Bitcode as an Interchange Format

PNaCl will need bitcode stability
Developer expects published bitcode to work forever

Download size is startup time
.bc is ~3x bigger than .nexe, ~1.9x when .gz
.bc is ~6x bigger than .NET

How should we handle bitcode versioning?
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We need your help!
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Status
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What’s running?

One bitcode file translates, validates, and runs on 
three architectures
All of SPEC2000 int and the four C fp tests pass

The translator is sandboxed
llc, as, ld runs as a NaCl module on x86-32 and 64

A few areas of portability work remain
C++ exception handling on ARM is incomplete
setjmp/longjmp is just coming together
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CodeGen Work

Control and data sandboxing on ARM
Robert, Cliff

Control and data sandboxing on x86
Robert, Alan, Jan, David

ILP32 on x86-64
Jan, David

x86-32 and x86-64 MC ELF contributions
Rafael

ARM MC ELF contributions
Jason
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Front end work

ILP32 for x86-64
Jan, DavidM

Varargs
DavidM

Exception handling, setjmp
Robert
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Future Work
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Directly Producing .so’s

ELF MC
ARM support is still incomplete

MCAssembler
“Bundling” support for NaCl pseudo-instructions

.so generation
Simulated linking to collect symbols
Emission work for DT_NEEDED
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Intrinsics and/or Assembly

One of the promises of NaCl is access to the 
performance that comes from hand-tuning while 
not sacrificing portability or safety.

How do we get to, e.g., AES instructions, etc.?
How do we optimize for cache configuration, etc.?
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Other future work

Clang
Other languages that could target bitcode

.NET/Mono, ...

JIT support
Performance

feedback directed optimization, ...

Bitcode size
Translation time
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Want to Learn More?

http://www.chromium.org/nativeclient
(Follow Portable Native Client link)

http://code.google.com/p/nativeclient
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