
1

Portable Native Client

David Sehr, Robert Muth, Jan Voung, David Meyer,
Betul Buyukkurt, Karl Schimpf, Jason Kim, Rafael Espindola,
Alan Donovan

Thursday, November 4, 2010



Agenda
Motivation
Approach
Safe Translation
Bitcode as an Interchange Format
Status
Future Work

2

Thursday, November 4, 2010



Motivation

Thursday, November 4, 2010



A NaCl-Enabled Web Application

Thursday, November 4, 2010



A NaCl-Enabled Web Application

Native Client
Helper

Your favorite language

Thursday, November 4, 2010



A NaCl-Enabled Web Application

Native Client
Helper

Your favorite language

Screened for malicious 
instructions

Thursday, November 4, 2010



A NaCl-Enabled Web Application

Native Client
Helper

Your favorite language

Screened for malicious 
instructions

System calls moderated by a 
virtualized OS

Thursday, November 4, 2010



A NaCl-Enabled Web Application

Native Client
Helper

Your favorite language

Screened for malicious 
instructions

System calls moderated by a 
virtualized OS

Performance within 5% of
native code

Thursday, November 4, 2010



Applications with NaCl

9

Lego Star Wars

Nexuiz

Darkroom demo

Thursday, November 4, 2010



Where Native Client Started

10

x86-32OSX
Windows

Linux

Thursday, November 4, 2010



Where We Went Next

11

x86-32

ARM

Thursday, November 4, 2010



What Developers Want

12

x86-32

ARM
x86-64

Only one porting effort

Thursday, November 4, 2010



Approach

13

Thursday, November 4, 2010



Application Life Cycle

14

app.bc

a.cc
z.cc

app.so

sources

library
info

lib.bc

Thursday, November 4, 2010



Application Life Cycle

15

app.bc

a.cc
z.cc

app.so

sources

library
info

lib.bc

Bitcode is PNaCl’s 
distribution format

Thursday, November 4, 2010



Client side

Native Client
Helper

http://myurl/myapp.bc

translation
engine

myapp.so

NaCl
sandbox

ELF
x86, x64, or ARM

Thursday, November 4, 2010

http://myurl/myapp.bc
http://myurl/myapp.bc


Translation Engine

17

in my cache?

myapp.so

translator
(llvm)

myapp.bc

use cached
translation

save
translation

Thursday, November 4, 2010



Translation Engine

18

in my cache?

myapp.so

translator
(llvm)

myapp.bc

use cached
translation

save
translation

Know the platform (uarch)

Thursday, November 4, 2010



Translation Engine

19

in my cache?

myapp.so

translator
(llvm)

myapp.bc

use cached
translation

save
translation

Know the platform (uarch)
Can collect/use profiling data

Webpage-specific 
specialization

Thursday, November 4, 2010



Translation Engine

20

in my cache?

myapp.so

translator
(llvm)

myapp.bc

use cached
translation

save
translation

Know the platform (uarch)
Can collect/use profiling data

Webpage-specific 
specialization

Can translate at
invocation time
install time
asynchronously

Thursday, November 4, 2010



Safe Translation

Thursday, November 4, 2010



Translating in a Sandbox

The translator must run in the browser
Malicious bitcode files are a potential attack vector

22

Thursday, November 4, 2010



Translating in a Sandbox

The translator must run in the browser
Malicious bitcode files are a potential attack vector

23

Translator phases are run as 
NaCl modules

Thursday, November 4, 2010



Translator

24

llc

myapp.so

myapp.bc

as

ld

today

Thursday, November 4, 2010



Translator

25

llc

myapp.so

myapp.bc

as

ld

today

llc

myapp.so

myapp.bc

what we want

Thursday, November 4, 2010



Translator

26

llc

myapp.so

myapp.bc

as

ld

today

llc

myapp.so

myapp.bc

what we want

+ MC ELF
+ Bundling

+ DT_NEEDED

Thursday, November 4, 2010



Bitcode as an Interchange Format

Thursday, November 4, 2010



Target Model

Address space / data model
ILP32 (sizeof(int) == sizeof(long) == sizeof(void*))
sizeof(va_list) == 24
1GB maximum total address space
Stack pointer starts at the top of the address space

Data types
IEEE fp
“natural” alignment

(e.g., double is aligned 0mod8)

Byte order
Little Endian

28

Thursday, November 4, 2010



Target Model 

C++ Exception Handling
x86-32 Linux model

varargs
sizeof(va_list) == 24
Front end emits va_arg instruction

setjmp
Consistent jmp_buf size (work in progress)

29

Thursday, November 4, 2010



Target Model 

Calling conventions
Bitcode file is calling convention neutral
Actual target convention determined by translator

Concurrency and memory model
Assume a least common denominator

Store ordering within a thread
Explicit synchronization across threads

We expect people to use llvm atomic/barrier intrinsics 
where needed

30

Thursday, November 4, 2010



Bitcode as an Interchange Format

PNaCl will need bitcode stability
Developer expects published bitcode to work forever

Download size is startup time
.bc is ~3x bigger than .nexe, ~1.9x when .gz
.bc is ~6x bigger than .NET

How should we handle bitcode versioning?

31

Thursday, November 4, 2010



Bitcode as an Interchange Format

PNaCl will need bitcode stability
Developer expects published bitcode to work forever

Download size is startup time
.bc is ~3x bigger than .nexe, ~1.9x when .gz
.bc is ~6x bigger than .NET

How should we handle bitcode versioning?

32

We need your help!

Thursday, November 4, 2010



Status

33

Thursday, November 4, 2010



What’s running?

One bitcode file translates, validates, and runs on 
three architectures
All of SPEC2000 int and the four C fp tests pass

The translator is sandboxed
llc, as, ld runs as a NaCl module on x86-32 and 64

A few areas of portability work remain
C++ exception handling on ARM is incomplete
setjmp/longjmp is just coming together

34

Thursday, November 4, 2010



CodeGen Work

Control and data sandboxing on ARM
Robert, Cliff

Control and data sandboxing on x86
Robert, Alan, Jan, David

ILP32 on x86-64
Jan, David

x86-32 and x86-64 MC ELF contributions
Rafael

ARM MC ELF contributions
Jason

35

Thursday, November 4, 2010



Front end work

ILP32 for x86-64
Jan, DavidM

Varargs
DavidM

Exception handling, setjmp
Robert

36

Thursday, November 4, 2010



Future Work

37

Thursday, November 4, 2010



Directly Producing .so’s

ELF MC
ARM support is still incomplete

MCAssembler
“Bundling” support for NaCl pseudo-instructions

.so generation
Simulated linking to collect symbols
Emission work for DT_NEEDED

38

Thursday, November 4, 2010



Intrinsics and/or Assembly

One of the promises of NaCl is access to the 
performance that comes from hand-tuning while 
not sacrificing portability or safety.

How do we get to, e.g., AES instructions, etc.?
How do we optimize for cache configuration, etc.?

39

Thursday, November 4, 2010



Other future work

Clang
Other languages that could target bitcode

.NET/Mono, ...

JIT support
Performance

feedback directed optimization, ...

Bitcode size
Translation time

40

Thursday, November 4, 2010



Want to Learn More?

http://www.chromium.org/nativeclient
(Follow Portable Native Client link)

http://code.google.com/p/nativeclient

41

Thursday, November 4, 2010

http://www.chromium.org
http://www.chromium.org
http://code.google.com/p/nativeclient
http://code.google.com/p/nativeclient

