
Handling Multi-Versioning in LLVM: Code Tracking
and Cloning

Alexandra Jimborean Vincent Loechner Philippe Clauss

INRIA - CAMUS Team
Université de Strasbourg

London - September, 2011

A. Jimborean, V. Loechner, Ph. Clauss
Handling Multi-Versioning in LLVM: Code

Tracking and Cloning London - September, 2011 1 / 37

Motivation

Outline

1 Motivation

2 State of the Art

3 Tracking code in LLVM IR using attached metadata

4 Interaction between high- and low-level IRs

5 Experiments

6 Conclusions

A. Jimborean, V. Loechner, Ph. Clauss
Handling Multi-Versioning in LLVM: Code

Tracking and Cloning London - September, 2011 2 / 37

Motivation

Why do we need multi-versioning?

Multi-versioning

Sampling – Instrumentation

Adaptive computing – Runtime version selection

Dynamic optimization – Speculative parallelism

Multiple versions in different representations

Each version in the most suitable IR

Low-level IR for acquiring low-level information

Higher level IR for performing code transformations

Handled by a runtime system

A. Jimborean, V. Loechner, Ph. Clauss
Handling Multi-Versioning in LLVM: Code

Tracking and Cloning London - September, 2011 3 / 37

Motivation

Why do we need multi-versioning?

Multi-versioning

Sampling – Instrumentation

Adaptive computing – Runtime version selection

Dynamic optimization – Speculative parallelism

Multiple versions in different representations

Each version in the most suitable IR

Low-level IR for acquiring low-level information

Higher level IR for performing code transformations

Handled by a runtime system

A. Jimborean, V. Loechner, Ph. Clauss
Handling Multi-Versioning in LLVM: Code

Tracking and Cloning London - September, 2011 3 / 37

State of the Art

Outline

1 Motivation

2 State of the Art

3 Tracking code in LLVM IR using attached metadata

4 Interaction between high- and low-level IRs

5 Experiments

6 Conclusions

A. Jimborean, V. Loechner, Ph. Clauss
Handling Multi-Versioning in LLVM: Code

Tracking and Cloning London - September, 2011 4 / 37

State of the Art

Related work

Tracking code through the optimization phase

Extend debugging info and create bi-directional maps [Brooks et al.]

Debug dynamically optimized code [Kumar et al.]

Interactive Compilation Interface

Providing access to the internal functionalities of the compilers

Generic cloning, instrumentation, control of individual optimization
passes

Multi-versioning available only at function level

http://ctuning.org/ici

A. Jimborean, V. Loechner, Ph. Clauss
Handling Multi-Versioning in LLVM: Code

Tracking and Cloning London - September, 2011 5 / 37

State of the Art

LLVM features

Embedding high-level information in the IR

Support for preserving the high-level information

Annotate the code using metadata
No influence on the optimization passes, unless designed for this

Cloning utilities

Copies of instructions, basic blocks or functions

No correlation between original and cloned values

Reserved only for some very specific situations

A. Jimborean, V. Loechner, Ph. Clauss
Handling Multi-Versioning in LLVM: Code

Tracking and Cloning London - September, 2011 6 / 37

Tracking code in LLVM IR using attached metadata

Outline

1 Motivation

2 State of the Art

3 Tracking code in LLVM IR using attached metadata

4 Interaction between high- and low-level IRs

5 Experiments

6 Conclusions

A. Jimborean, V. Loechner, Ph. Clauss
Handling Multi-Versioning in LLVM: Code

Tracking and Cloning London - September, 2011 7 / 37

Tracking code in LLVM IR using attached metadata

From C/C++ to LLVM IR with metadata

Code tracking in C/C++ source code

Source code : pragma
Define new pragma to
delimit the code regions
of interest

Focus on loop nests

A. Jimborean, V. Loechner, Ph. Clauss
Handling Multi-Versioning in LLVM: Code

Tracking and Cloning London - September, 2011 8 / 37

Tracking code in LLVM IR using attached metadata

Extending the IR vs using annotations

A. Jimborean, V. Loechner, Ph. Clauss
Handling Multi-Versioning in LLVM: Code

Tracking and Cloning London - September, 2011 9 / 37

Tracking code in LLVM IR using attached metadata

Identify the region after applying optimizations

Loop nest structure is significantly changed

Loop fusion, splitting, interchange etc.

Metadata information may not be preserved

Identify instructions that carry metadata information and consider
the whole enclosing loop nest

Additional code might be included
All instructions marked for multiversioning are enclosed

A. Jimborean, V. Loechner, Ph. Clauss
Handling Multi-Versioning in LLVM: Code

Tracking and Cloning London - September, 2011 10 / 37

Tracking code in LLVM IR using attached metadata

A. Cloning

BB1_clone:

x

x

x

BB1 ------> BB1_clone

BB2 ------> BB2_clone

BB3 ------> BB3_clone

BB4 ------> BB4_clone

BB2_clone:

BB3_clone: BB4_clone:

A. Jimborean, V. Loechner, Ph. Clauss
Handling Multi-Versioning in LLVM: Code

Tracking and Cloning London - September, 2011 11 / 37

Tracking code in LLVM IR using attached metadata

B. Rebuild control-flow-graph between clones

A. Jimborean, V. Loechner, Ph. Clauss
Handling Multi-Versioning in LLVM: Code

Tracking and Cloning London - September, 2011 12 / 37

Tracking code in LLVM IR using attached metadata

C. Extract versions in separate functions

Each version compiled independently into the most suitable IR
A. Jimborean, V. Loechner, Ph. Clauss

Handling Multi-Versioning in LLVM: Code
Tracking and Cloning London - September, 2011 13 / 37

Tracking code in LLVM IR using attached metadata

Challenges: Dominate all uses

Instruction does not dominate all uses!
%tmp = add i32 %a, %b

%aux_clone = add i32 %c, %tmp

Clone, replace uses in clones, reinsert, reconstruct the loop structure

%tmp = add i32 %a, %b
%aux = add i32 %c, %tmp

%tmp_clone = add i32 %a_clone, %b_clone
%aux_clone = add i32 %c_clone, %tmp_clone

A. Jimborean, V. Loechner, Ph. Clauss
Handling Multi-Versioning in LLVM: Code

Tracking and Cloning London - September, 2011 14 / 37

Interaction between high- and low-level IRs

Outline

1 Motivation

2 State of the Art

3 Tracking code in LLVM IR using attached metadata

4 Interaction between high- and low-level IRs

5 Experiments

6 Conclusions

A. Jimborean, V. Loechner, Ph. Clauss
Handling Multi-Versioning in LLVM: Code

Tracking and Cloning London - September, 2011 15 / 37

Interaction between high- and low-level IRs

Interaction between high- and low-level IRs

Communication between code versions in distinct representations

Control flow cannot enter or exit lower level representations
Inline assembly is expected to ‘fall through’ to the following code

Handle the control flow graph in the low-level IR

Minimally influence the behavior of the original code

A. Jimborean, V. Loechner, Ph. Clauss
Handling Multi-Versioning in LLVM: Code

Tracking and Cloning London - September, 2011 16 / 37

Interaction between high- and low-level IRs

Handling jumps between LLVM IR and inline assembly

Generic callbacks - patched by the runtime system

mov $0x0,%rdi //address of the module
mov $0x0,%rsi //address of the function

Labels
Identify the address of the code to be patched
Target of the inline jumps

Jumps

Macro Hexadecimal form

asm_jge8 TARGET .byte 0X7D
.byte \TARGET \()-.-1

asm_jge32 TARGET .byte 0X0F, 0X8D
.long \TARGET \()-.-4

A. Jimborean, V. Loechner, Ph. Clauss
Handling Multi-Versioning in LLVM: Code

Tracking and Cloning London - September, 2011 17 / 37

Interaction between high- and low-level IRs

Control flow graph rewritten in inline code

A. Jimborean, V. Loechner, Ph. Clauss
Handling Multi-Versioning in LLVM: Code

Tracking and Cloning London - September, 2011 18 / 37

Interaction between high- and low-level IRs

Control flow graph rewritten in inline code

A. Jimborean, V. Loechner, Ph. Clauss
Handling Multi-Versioning in LLVM: Code

Tracking and Cloning London - September, 2011 18 / 37

Interaction between high- and low-level IRs

Control flow graph rewritten in inline code

A. Jimborean, V. Loechner, Ph. Clauss
Handling Multi-Versioning in LLVM: Code

Tracking and Cloning London - September, 2011 18 / 37

Interaction between high- and low-level IRs

Challenges: Phi nodes

Promote registers to memory

opt -reg2mem prg.bc

A. Jimborean, V. Loechner, Ph. Clauss
Handling Multi-Versioning in LLVM: Code

Tracking and Cloning London - September, 2011 19 / 37

Interaction between high- and low-level IRs

Eliminate Phi nodes to hack into the CFG

A. Jimborean, V. Loechner, Ph. Clauss
Handling Multi-Versioning in LLVM: Code

Tracking and Cloning London - September, 2011 20 / 37

Interaction between high- and low-level IRs

Toy example

A. Jimborean, V. Loechner, Ph. Clauss
Handling Multi-Versioning in LLVM: Code

Tracking and Cloning London - September, 2011 21 / 37

Interaction between high- and low-level IRs

SPEC CPU 2006 bzip

CFG of a simple loop from bzip2 SPEC CPU 2006

A. Jimborean, V. Loechner, Ph. Clauss
Handling Multi-Versioning in LLVM: Code

Tracking and Cloning London - September, 2011 22 / 37

Interaction between high- and low-level IRs

Promote registers to memory

Loop indices must be either defined or used outside the loop,
otherwise they are not sent as parameters when extracting the
loops in new functions

A. Jimborean, V. Loechner, Ph. Clauss
Handling Multi-Versioning in LLVM: Code

Tracking and Cloning London - September, 2011 23 / 37

Interaction between high- and low-level IRs

Promote registers to memory

Inline assembly defining labels must come before the phi
instructions

A. Jimborean, V. Loechner, Ph. Clauss
Handling Multi-Versioning in LLVM: Code

Tracking and Cloning London - September, 2011 24 / 37

Interaction between high- and low-level IRs

Promote registers to memory

More memory accesses

Restricted optimizations

Negative impact on
performance

A. Jimborean, V. Loechner, Ph. Clauss
Handling Multi-Versioning in LLVM: Code

Tracking and Cloning London - September, 2011 25 / 37

Interaction between high- and low-level IRs

Challenges: Inline assembly

Prevent optimizations from
duplicating, reordering, deleting the
inlined code

Create a new BasicBlock
containing only the asm code
Connect it in the CFG using
indirect branches
Insert metadata to prevent
optimizations

Minimally influence the optimization
passes to maintain performance

A. Jimborean, V. Loechner, Ph. Clauss
Handling Multi-Versioning in LLVM: Code

Tracking and Cloning London - September, 2011 26 / 37

Experiments

Outline

1 Motivation

2 State of the Art

3 Tracking code in LLVM IR using attached metadata

4 Interaction between high- and low-level IRs

5 Experiments

6 Conclusions

A. Jimborean, V. Loechner, Ph. Clauss
Handling Multi-Versioning in LLVM: Code

Tracking and Cloning London - September, 2011 27 / 37

Experiments

Loop Instrumentation by sampling

Following code

No Yes

No

Yes Yes

No

Original

version

of the loop

Instrumented

 version

of the loop

End of the loop

Decision block:

A. Jimborean, V. Loechner, Ph. Clauss
Handling Multi-Versioning in LLVM: Code

Tracking and Cloning London - September, 2011 28 / 37

Experiments

Challenges: Multiple exit loops

Extract each loop in a new function

Unique exit: returning point of the function

A. Jimborean, V. Loechner, Ph. Clauss
Handling Multi-Versioning in LLVM: Code

Tracking and Cloning London - September, 2011 29 / 37

Experiments

Challenges: Instrumentation instructions

In x86_64 assembly: after register
allocation

In LLVM IR
Requires type conversions
Instrumenting all LLVM loads and
stores –> negative impact on the
performance

A. Jimborean, V. Loechner, Ph. Clauss
Handling Multi-Versioning in LLVM: Code

Tracking and Cloning London - September, 2011 30 / 37

Experiments

Results SPEC CPU 2006

Program Runtime Runtime # linear # instrumented Percentage
overhead overhead m.a. m.a. of linear

(-O0) (-O3) m.a.

bzip2 0.24% 12.31% 608 1,053 57.73%
mcf 20.76% 17.23% 2,848,598 4,054,863 70.25%
milc 0.081% 3.61% 1,988,256,000 1,988,256,195 99.99%

hmmer 0.062% 0.76% 845 0 0%
sjeng 182% 11.13% 1,032,148,267 1,155,459,440 89.32%

libquantum 3.88% 2.76% 203,078 203,581 99.75%
h264ref 0.49% 4.59% 30,707,102 32,452,013 94.62%

lbm 0% 0.93% 358 0 0%
sphinx3 172% 27.62% 51,566,707 78,473,958 65.71%

A. Jimborean, V. Loechner, Ph. Clauss
Handling Multi-Versioning in LLVM: Code

Tracking and Cloning London - September, 2011 31 / 37

Experiments

Measurements on SPEC CPU 2006: -O0 vs -O3

A. Jimborean, V. Loechner, Ph. Clauss
Handling Multi-Versioning in LLVM: Code

Tracking and Cloning London - September, 2011 32 / 37

Experiments

Results

Pointer-Intensive benchmark suite

Program Runtime # linear # instrumented Percentage
overhead m.a. m.a. of linear m.a.

anagram -5.37% 134 159 84.27%
bc 183% 243,785 302,034 80.71%
ft -8.46% 22 36 61.11%
ks 29.7% 29,524 42,298 69.79%

A. Jimborean, V. Loechner, Ph. Clauss
Handling Multi-Versioning in LLVM: Code

Tracking and Cloning London - September, 2011 33 / 37

Conclusions

Outline

1 Motivation

2 State of the Art

3 Tracking code in LLVM IR using attached metadata

4 Interaction between high- and low-level IRs

5 Experiments

6 Conclusions

A. Jimborean, V. Loechner, Ph. Clauss
Handling Multi-Versioning in LLVM: Code

Tracking and Cloning London - September, 2011 34 / 37

Conclusions

Open questions

Promoting registers to memory (Phi node elimination)

Maintain LLVM branches and jumps in inline assembly

Type conversions

A. Jimborean, V. Loechner, Ph. Clauss
Handling Multi-Versioning in LLVM: Code

Tracking and Cloning London - September, 2011 35 / 37

Conclusions

Perspectives

Speculative code parallelization on the fly using multi-versioning

Develop an easy-to-use API to extend the framework

A. Jimborean, V. Loechner, Ph. Clauss
Handling Multi-Versioning in LLVM: Code

Tracking and Cloning London - September, 2011 36 / 37

Conclusions

Thank you.

A. Jimborean, V. Loechner, Ph. Clauss
Handling Multi-Versioning in LLVM: Code

Tracking and Cloning London - September, 2011 37 / 37

	Motivation
	State of the Art
	Tracking code in LLVM IR using attached metadata
	Interaction between high- and low-level IRs
	Experiments
	Conclusions

