Handling Multi-Versioning in LLVM: Code Tracking
and Cloning

Alexandra Jimborean Vincent Loechner Philippe Clauss

INRIA - CAMUS Team
Université de Strasbourg

London - September, 2011

Handling Multi-Versioning in LLVM: Code
A. Jimborean, V. Loechner, Ph. Clauss Tracking and Cloning London - September, 2011 1/37

Motivation

Outline

Q Motivation

- Handling Multi-Versioning in LLVM: Code
A. Jimborean, V. Loechner, Ph. Clauss Tracking and Cloning London - September, 2011 2/37

Motivation

Why do we need multi-versioning?

Multi-versioning
@ Sampling — Instrumentation
@ Adaptive computing — Runtime version selection
@ Dynamic optimization — Speculative parallelism

Handling Multi-Versioning in LLVM: Code

A. Jimborean, V. Loechner, Ph. Clauss Tracking and Cloning London - September, 2011

3/37

Motivation

Why do we need multi-versioning?

Multi-versioning
@ Sampling — Instrumentation
@ Adaptive computing — Runtime version selection
@ Dynamic optimization — Speculative parallelism

Multiple versions in different representations
@ Each version in the most suitable IR
@ Low-level IR for acquiring low-level information
@ Higher level IR for performing code transformations
@ Handled by a runtime system

Handling Multi-Versioning in LLVM: Code
A. Jimborean, V. Loechner, Ph. Clauss Tracking and Cloning London - September, 2011

3/37

State of the Art

Outline

e State of the Art

- Handling Multi-Versioning in LLVM: Code
A. Jimborean, V. Loechner, Ph. Clauss Tracking and Cloning London - September, 2011 4/37

State of the Art

Related work

Tracking code through the optimization phase
@ Extend debugging info and create bi-directional maps [Brooks et al.]
@ Debug dynamically optimized code [Kumar et al.]

Interactive Compilation Interface
@ Providing access to the internal functionalities of the compilers

@ Generic cloning, instrumentation, control of individual optimization
passes

@ Multi-versioning available only at function level

http://ctuning.org/ici

Handling Multi-Versioning in LLVM: Code
A. Jimborean, V. Loechner, Ph. Clauss Tracking and Cloning London - September, 2011 5/37

State of the Art

LLVM features

Embedding high-level information in the IR
@ Support for preserving the high-level information

@ Annotate the code using metadata
@ No influence on the optimization passes, unless designed for this

Cloning utilities
@ Copies of instructions, basic blocks or functions
@ No correlation between original and cloned values
@ Reserved only for some very specific situations

Handling Multi-Versioning in LLVM: Code

A. Jimborean, V. Loechner, Ph. Clauss Tracking and Cloning London - September, 2011 6/37

Tracking code in LLVM IR using attached metadata

Outline

e Tracking code in LLVM IR using attached metadata

Handling Multi-Versioning in LLVM: Code
A. Jimborean, V. Loechner, Ph. Clauss Tracking and Cloning London - September, 2011 7137

Tracking code in LLVM IR using attached metadata

From C/C++ to LLVM IR with metadata

Code tracking in C/C++ source code

@ Source code : pragma #pragma multi-version
o Define new pragma to {
delimit the code regions for(int i=0; i<N; i++)
of interest alil =2 *1i;
}

@ Focus on loop nests

Handling Multi-Versioning in LLVM: Code
A. Jimborean, V. Loechner, Ph. Clauss Tracking and Cloning London - September, 2011

8/37

Tracking code in LLVM IR using attached metadata

Extending the IR vs using annotations

Barriers:

LLVM_dummy instl
Statement out 1
Statement in 1

Statement in 2
#pragma new_pragma { Statement _out 1 LLVM dummy inst2
LLVM_dummy instl Statement out 2
C/C++ code Statement in 1
C/C++ code Statement in 2
LIVM dummy inst2 Statement out 1
} Statement out 2 LLVM_dummy instl
Statement in 1
LLVM_dummy inst2
Statement in 2
Statement out 2
Metadata:

#pragma new_pragma {

C/C++ code
C/C++ code

}

Statement out 1
Statement in 1, !metadata info !0
Statement in 2, !metadata info !0
Statement out 2

Statement out 1
Statement in 1, !metadata info !0
Statement out 2
Statement in 2, !metadata info !0

Handling Multi-Versioning in LLVM: Code

A. Jimborean, V. Loechner, Ph. Clauss Tracking and Cloning

London - September, 2011 9/37

Tracking code in LLVM IR using attached metadata

Identify the region after applying optimizations

@ Loop nest structure is significantly changed
@ Loop fusion, splitting, interchange etc.
@ Metadata information may not be preserved
@ |dentify instructions that carry metadata information and consider

the whole enclosing loop nest

@ Additional code might be included
@ All instructions marked for multiversioning are enclosed

Handling Multi-Versioning in LLVM: Code
A. Jimborean, V. Loechner, Ph. Clauss Tracking and Cloning London - September, 2011 10/37

Tracking code in LLVM IR using attached metadata

A. Cloning

entry:

(.

X
‘BBS_clone: ‘BB4_clone:
BB1 ------ > BB1 clone
BB2 ------> BB2 clone
BB5: BB3 ---—-> BB3 clone

Handling Multi-Versioning in LLVM: Code
A. Jimborean, V. Loechner, Ph. Clauss Tracking and Cloning London - September, 2011 11/37

Tracking code in LLVM IR using attached metadata

B. Rebuild control-flow-graph between clones

entry:

‘BBS_clone:

‘BB4_clone:

0|

BB5:

Handling Multi-Versioning in LLVM: Code
A. Jimborean, V. Loechner, Ph. Clauss Tracking and Cloning London - September, 2011 12 /37

Tracking code in LLVM IR using attached metadata

C. Extract versions in separate functions

entry:

Decision

\Version 1:

[Call | [call |

| Version_1:| |Version 2:|
BB5: ‘BB3iclone: ’BB4iclone:
L

Each version compiled independently into the most suitable IR

Handling Multi-Versioning in LLVM: Code
A. Jimborean, V. Loechner, Ph. Clauss Tracking and Cloning London - September, 2011 13/37

Tracking code in LLVM IR using attached metadata

Challenges: Dominate all uses

Instruction does not dominate all uses!
%tmp = add i32 %a, %b
%aux_clone = add i32 %c, %tmp

Clone, replace uses in clones, reinsert, reconstruct the loop structure

%tmp = add i32 %a, %b
%aux = add i32 %c, %tmp

%tmp_clone = add i32 %a_clone, %b_clone
%aux_clone = add i32 %c_clone, %tmp_clone

Handling Multi-Versioning in LLVM: Code
A. Jimborean, V. Loechner, Ph. Clauss Tracking and Cloning London - September, 2011 14/37

Interaction between high- and low-level IRs

Outline

e Interaction between high- and low-level IRs

Handling Multi-Versioning in LLVM: Code
A. Jimborean, V. Loechner, Ph. Clauss Tracking and Cloning London - September, 2011 15/ 37

Interaction between high- and low-level IRs

Interaction between high- and low-level IRs

@ Communication between code versions in distinct representations

@ Control flow cannot enter or exit lower level representations
@ Inline assembly is expected to ‘fall through’ to the following code

@ Handle the control flow graph in the low-level IR
@ Minimally influence the behavior of the original code

Handling Multi-Versioning in LLVM: Code
A. Jimborean, V. Loechner, Ph. Clauss Tracking and Cloning London - September, 2011 16 /37

Interaction between high- and low-level IRs

Handling jumps between LLVM IR and inline assembly

@ Generic callbacks - patched by the runtime system
o nmov $0x0, % di
@ nov $0x0, % si

@ Labels

// address of the nodul e
/ / address of the function

@ l|dentify the address of the code to be patched
@ Target of the inline jumps

@ Jumps
| Macro | Hexadecimal form |
asm_jge8 TARGET | .byte OX7D
byte \TARGET \()-.-1
asm_jge32 TARGET | .byte OXOF, 0X8D
1ong \TARGET \()-.-4
Handling Multi-Versioning in LLVM: Code
A. Jimborean, V. Loechner, Ph. Clauss

Tracking and Cloning

London - September, 2011 17137

Interaction between high- and low-level IRs

Control flow graph rewritten in inline code

. E3
BB1

El (E2

BB2 BB3

BB4 BB5

Handling Multi-Versioning in LLVM: Code
A. Jimborean, V. Loechner, Ph. Clauss Tracking and Cloning London - September, 2011

18/37

Interaction between high- and low-level IRs

Control flow graph rewritten in inline code

BB1
l NEO
l NEI1 NE2
BB2 BB3
BB4 BB5 |

Handling Multi-Versioning in LLVM: Code
A. Jimborean, V. Loechner, Ph. Clauss Tracking and Cloning London - September, 2011

18/37

Interaction between high- and low-level IRs

Control flow graph rewritten in inline code

e E3
BB1
lNEO
NBB NE3
El (NE1 NE2 E2
BB2 BB3
BB4 BB5 —
Handling Multi-Versioning in LLVM: Code
London - September, 2011 18/37

A. Jimborean, V. Loechner, Ph. Clauss Tracking and Cloning

Interaction between high- and low-level IRs

Challenges: Phi nodes

@ Promote registers to memory
@ opt -reg2mem prg.bc

Handling Multi-Versioning in LLVM: Code
A. Jimborean, V. Loechner, Ph. Clauss Tracking and Cloning London - September, 2011

19/37

Interaction between high- and low-level IRs

Eliminate Phi nodes to hack into the CFG

BB1: BB1_clone:
i ¥ 2
BB2: BB2_clone:
BB5: v=.. v_clone = ...
‘ BB3 ‘ ‘ BB4: ‘ ‘ BB3_clone: ‘ BB4_clone:

BB6:
vl = phi(v, BB3), (v_clone, BB3_clone)

BB 7:

BB N:
V2 = phi(y, BB_7), (.) (-.)
V2 = phi(vl, BB_7), (..) (.

Handling Multi-Versioning in LLVM: Code
Tracking and Cloning

A. Jimborean, V. Loechner, Ph. Clauss London - September, 2011

20/37

Interaction between high- and low-level IRs

Toy example

[<odeapts it oxt_Tarm |

[o o |

[codaRapi_org_ext Torm | [coderapt |
1+ TLF

CFG for ‘mai function

Handling Multi-Versioning in LLVM: Code
A. Jimborean, V. Loechner, Ph. Clauss Tracking and Cloning London - September, 2011 21/37

Interaction between high- and low-level IRs

SPEC CPU 2006 bzip

CFG of a simple loop from bzip2 SPEC CPU 2006

Handling Multi-Versioning in LLVM: Code
A. Jimborean, V. Loechner, Ph. Clauss Tracking and Cloning London - September, 2011

22/37

Interaction between high- and low-level IRs

Promote registers to memory

@ Loop indices must be either defined or used outside the loop,
otherwise they are not sent as parameters when extracting the
loops in new functions

Handling Multi-Versioning in LLVM: Code
A. Jimborean, V. Loechner, Ph. Clauss Tracking and Cloning London - September, 2011 23/37

Interaction between high- and low-level IRs

Promote registers to memory

@ Inline assembly defining labels must come before the phi
instructions

BB1_clone:
labelBB1:

v =phi(..), (..)

BB2_clone:
BB3_clone: BB4_clone:
Jjmp labelBB1

I

Handling Multi-Versioning in LLVM: Code
A. Jimborean, V. Loechner, Ph. Clauss Tracking and Cloning London - September, 2011 2437

Interaction between high- and low-level IRs

Promote registers to memory

@ More memory accesses
@ Restricted optimizations

@ Negative impact on
performance

The Thinker Award

Handling Multi-Versioning in LLVM: Code
A. Jimborean, V. Loechner, Ph. Clauss Tracking and Cloning London - September, 2011 25/37

Interaction between high- and low-level IRs

Challenges: Inline assembly

@ Prevent optimizations from
duplicating, reordering, deleting the
inlined code

@ Create a new BasicBlock
containing only the asm code

@ Connect it in the CFG using
indirect branches

o insertmetadatatoprevent

@ Minimally influence the optimization Tha-Thiaker Avand
passes to maintain performance

Handling Multi-Versioning in LLVM: Code

A. Jimborean, V. Loechner, Ph. Clauss Tracking and Cloning London - September, 2011

26 /37

Experiments

Outline

e Experiments

- Handling Multi-Versioning in LLVM: Code
A. Jimborean, V. Loechner, Ph. Clauss Tracking and Cloning London - September, 2011 27137

Experiments

Loop Instrumentation by sampling

v

Decision block: (_._

No Yes
Original Instrumented
% version version
of the loop of the loop
No End of the loop No

Yes ¢ Yes

Following code

- Handling Multi-Versioning in LLVM: Code
A. Jimborean, V. Loechner, Ph. Clauss Tracking and Cloning London - September, 2011

28/37

Experiments

Challenges: Multiple exit loops

@ Extract each loop in a new function

@ Unique exit: returning point of the function

Handling Multi-Versioning in LLVM: Code
A. Jimborean, V. Loechner, Ph. Clauss Tracking and Cloning London - September, 2011

29/37

Experiments

Challenges: Instrumentation instructions

@ In x86_64 assembly: after register
allocation

@ InLLVM IR
@ Requires type conversions
@ Instrumenting all LLVM loads and
stores —> negative impact on the
performance The Thinker Award

Handling Multi-Versioning in LLVM: Code

A. Jimborean, V. Loechner, Ph. Clauss Tracking and Cloning London - September, 2011

30/37

Results SPEC CPU 2006

Experiments

Program Runtime | Runtime # linear # instrumented | Percentage
overhead | overhead m.a. m.a. of linear
(-00) (-03) m.a.
bzip2 0.24% 12.31% 608 1,053 57.73%
mcf 20.76% 17.23% 2,848,598 4,054,863 70.25%
milc 0.081% 3.61% 1,988,256,000 | 1,988,256,195 99.99%
hmmer 0.062% 0.76% 845 0 0%
sjeng 182% 11.13% | 1,032,148,267 | 1,155,459,440 89.32%
libquantum 3.88% 2.76% 203,078 203,581 99.75%
h264ref 0.49% 4.59% 30,707,102 32,452,013 94.62%
Ibm 0% 0.93% 358 0 0%
sphinx3 172% 27.62% 51,566,707 78,473,958 65.71%

A. Jimborean, V. Loechner, Ph. Clauss

Handling Multi-Versioning in LLVM: Code

Tracking and Cloning

London - September, 2011

31/37

Experiments

Measurements on SPEC CPU 2006: -O0 vs -O3

180

140
120

100

- <
- 5
o

bzip2 met mic

A. Jimborean, V. Loechner, Ph. Clauss

1
(A R
1\
1 I
$ \ 1
f } 1 1
I \
! " ’l <0V 00
N [y 1 Ov 03
1 \ N
T - 7
A\ 1
N \]
\
l’ . !
1 1
I \ 1
\ <
’l G 4
\} i
1 \ 1
)
I’ 5 !
2 < ’
______ % S
hmmer sieng libquantum h264ref bbm sphinx

Handling Multi-Versioning in LLVM: Code

Tracking and Cloning London - September, 2011

32/37

Experiments

Results

Pointer-Intensive benchmark suite

Program | Runtime | #linear | #instrumented | Percentage
overhead m.a. m.a. of linear m.a.
anagram -5.37% 134 159 84.27%
bc 183% 243,785 302,034 80.71%
ft -8.46% 22 36 61.11%
ks 29.7% 29,524 42,298 69.79%

Handling Multi-Versioning in LLVM: Code
A. Jimborean, V. Loechner, Ph. Clauss Tracking and Cloning London - September, 2011 33/37

Conclusions

Outline

e Conclusions

Handling Multi-Versioning in LLVM: Code
A. Jimborean, V. Loechner, Ph. Clauss Tracking and Cloning London - September, 2011 34/37

Conclusions

Open questions
@ Promoting registers to memory (Phi node elimination)

@ Maintain LLVM branches and jumps in inline assembly

@ Type conversions

Handling Multi-Versioning in LLVM: Code
A. Jimborean, V. Loechner, Ph. Clauss Tracking and Cloning London - September, 2011

35/37

Conclusions

Perspectives
@ Speculative code parallelization on the fly using multi-versioning

@ Develop an easy-to-use API to extend the framework

Handling Multi-Versioning in LLVM: Code
A. Jimborean, V. Loechner, Ph. Clauss Tracking and Cloning London - September, 2011 36/37

Conclusions

Thank you.

- Handling Multi-Versioning in LLVM: Code
A. Jimborean, V. Loechner, Ph. Clauss Tracking and Cloning London - September, 2011 37/37

	Motivation
	State of the Art
	Tracking code in LLVM IR using attached metadata
	Interaction between high- and low-level IRs
	Experiments
	Conclusions

