
Google Confidential and Proprietary

Thread Safety
Annotations for Clang
DeLesley Hutchins <delesley@google.com>

Google Confidential and Proprietary

Outline of Talk

● Why... we need thread annotations.

● What... the annotations are, and what they do.

● How... thread annotations are implemented in clang.

● Huh? (Current challenges and future work).

Google Confidential and Proprietary

Why...
...we need thread safety annotations

Google Confidential and Proprietary

The problem with threads...
● Everybody wants to write multi-threaded code.

○ ... multi-core ... Moore's law ... power wall ... etc.
● Threading bugs (i.e. race conditions) are insidious.
● Race conditions are hard to see in source code:

○ Caused by interactions with other threads.
○ Not locally visible when examining code.
○ Not necessarily caught by code review.

● Race conditions are hard to find and eliminate:
○ Bugs are intermittent.
○ Hard to reproduce, especially in debugger.
○ Often don't appear in unit tests.

Google Confidential and Proprietary

Real World Example:
● Real world example at Google.
● Several man-weeks spent tracking down this bug.

// a global shared cache
class Cache {
public:
 // find value, and pin within cache
 Value* lookup(Key *K);
 // allow value to be reclaimed
 void release(Key *K);
};

Mutex CacheMutex;
Cache GlobalCache;

Google Confidential and Proprietary

Example (Part II): A Helper...
// Automatically release key when variable leaves scope
class ScopedLookup {
public:
 ScopedLookup(Key* K)
 : Ky(K), Val(GlobalCache.lookup(K))
 { }
 ~ScopedLookup() {
 GlobalCache.release(Ky);
 }
 Value* getValue() { return Val; }

private:
 Key* Ky;
 Value* Val;
};

Google Confidential and Proprietary

Example (Part III): The Bug
● Standard threading pattern:

○ lock, do something, unlock...

void bug(Key* K) {
 CacheMutex.lock();
 ScopedLookup lookupVal(K);
 doSomethingComplicated(lookupVal.getValue());
 CacheMutex.unlock();
 // OOPS!
};

Google Confidential and Proprietary

The Fix
void bug(Key* K) {
 CacheMutex.lock();
 {
 ScopedLookup lookupVal(K);
 doSomethingComplicated(lookupVal.getValue());
 // force destructor to be called here...
 }
 CacheMutex.unlock();
};

Google Confidential and Proprietary

Annotation Example:
Mutex CacheMutex;
Cache GlobalCache GUARDED_BY(CacheMutex);

class ScopedLookup {
public:
 ScopedLookup(Key* K) EXCLUSIVE_LOCKS_REQUIRED(CacheMutex)
 : Ky(K), Val(GlobalCache.lookup(K))
 { }
 ~ScopedLookup() EXCLUSIVE_LOCKS_REQUIRED(CacheMutex) {
 GlobalCache.release(Ky);
 }
 ...
};

Google Confidential and Proprietary

Reporting the bug:
● Now we get a warning:

void bug(Key* K) {
 CacheMutex.lock();
 ScopedLookup lookupVal(K);
 doSomethingComplicated(lookupVal.getValue());
 CacheMutex.unlock();
 // Warning: ~ScopedLookup requires lock CacheMutex
};

Google Confidential and Proprietary

What...
...the annotations are,

and what they do

Google Confidential and Proprietary

Some History
● Thread safety annotations:

○ Annotate code to specify locking protocol.
○ Verify protocol at compile time.

● Currently implemented within GCC.
○ Original implementation done by Le-Chun Wu
○ See "annotalysis" branch.

● Used in a number of projects at Google.
○ Replaces informal coding style guidelines.
○ Annotations used to be specified in comments.

● Currently porting the analysis to clang.
○ Initial development done by Caitlin Sadowski

Google Confidential and Proprietary

Thread Safety Annotations
● Works a lot like type-checking.

○ Annotations associate mutexes with data
... defines the threading interface of a class.

○ Machine checking of annotations at compile time.
○ Catch common errors

(e.g. failure to acquire lock before method call)

● Reference:

○ Type-based race detection for Java
Flanagan and Freund, 2000

Google Confidential and Proprietary

Annotation overview
● Acquiring and releasing locks:

 LOCKABLE
 EXCLUSIVE_LOCK_FUNCTION, SHARED_LOCK_FUNCTION
 EXCLUSIVE_TRYLOCK_FUNCTION, SHARED_TRYLOCK_FUNCTION
 UNLOCK_FUNCTION

● Guarded data:
 GUARDED_BY, PT_GUARDED_BY

● Guarded methods:
 EXCLUSIVE_LOCKS_REQUIRED, SHARED_LOCKS_REQUIRED
 LOCKS_EXCLUDED

● Deadlock detection:
 ACQUIRED_BEFORE, ACQUIRED_AFTER

● And a few misc. hacks...

Google Confidential and Proprietary

Defining a Mutex...
● LOCKABLE attribute declares mutex classes.
● Other attributes declare lock and unlock functions.

class LOCKABLE Mutex {
public:
 // read/write lock
 void lock() EXCLUSIVE_LOCK_FUNCTION();
 // read-only lock
 void lock_shared() SHARED_LOCK_FUNCTION();
 void unlock() UNLOCK_FUNCTION();
 // return true if lock succeeds
 bool try_lock() EXCLUSIVE_TRYLOCK_FUNCTION(true);
 bool try_lock_shared() SHARED_TRYLOCK_FUNCTION(true);
};

Google Confidential and Proprietary

Lock functions, ctd.
● Some methods may acquire another mutex.

class MyObject {
public:
 Mutex Mu;
 void lock() EXCLUSIVE_LOCK_FUNCTION(Mu) { Mu.lock(); }
 void unlock() UNLOCK_FUNCTION(Mu) { Mu.unlock();}
};

void foo() {
 MyObject Obj1;
 MyObject Obj2;
 Obj1.lock(); // acquires lock Obj1.Mu
 Obj2.lock(); // acquires lock Obj2.Mu
}

Google Confidential and Proprietary

Protecting data
● A guard declares the protecting mutex for a data

member.

class MyObject {
public:
 Mutex Mu;
 int a GUARDED_BY(Mu);
 int *b PT_GUARDED_BY(Mu);
};

void foo(MyObject &Obj) {
 Obj.a = 0; // Warning: requires lock Obj.Mu
 Obj.b = &Obj.a; // OK
 *Obj.b = 1; // Warning: requires lock Obj.Mu
}

Google Confidential and Proprietary

Guarded methods
● Methods and functions can also be guarded.

○ *_LOCKS_REQUIRED -- must hold lock when calling
○ LOCKS_EXCLUDED -- cannot hold lock when calling.

(For non-reentrant mutexes.)

void foo(MyObject &Obj) EXCLUSIVE_LOCKS_REQUIRED(Obj.Mu) {
 Obj.a = 0; // OK
}

void bar(MyObject &Obj) LOCKS_EXCLUDED(Obj.Mu) {
 Obj.lock();
 Obj.a = 0;
 Obj.unlock();
}

Google Confidential and Proprietary

Deadlock detection
● Declaring mutex order:

class MyObject {
 Mutex Mu1;
 Mutex Mu2 ACQUIRED_AFTER(Mu1);
};

void foo(MyObject &Obj) {
 Obj.Mu2.lock();
 Obj.Mu1.lock(); // Warning: Mu2 acquired before Mu1
 ...
}

Google Confidential and Proprietary

How...
...annotations are implemented

in Clang

Google Confidential and Proprietary

Implementation overview

● Basic algorithm
● Implementation subtleties

○ Parsing
○ Substitution
○ Expression equality

● Limitations of the analysis
● Discussion: gcc vs. clang

Google Confidential and Proprietary

Basic Algorithm
● Traverse the control flow graph.
● Maintain a set of currently held locks.

● On function call:
○ If lock function: add lock to set, check order
○ If unlock function: remove lock from set.
○ If guarded function: check if lock is in set.

● On load or store:
○ If guarded variable: check if lock is in set.

● Current implementation:

○ lib/Analysis/ThreadSafety.cpp

Google Confidential and Proprietary

Join points and branches

Google Confidential and Proprietary

CFG Example:
Mutex Mu1, Mu2;

void foo() {
 Mu1.lock();
 if (...) {
 Mu2.lock();
 // Warning: Mu2 was not unlocked at end of scope
 }
 while (...) {
 Mu1.unlock();
 doSomeIO();
 Mu1.lock(); // OK
 }
 // Warning: Mu1 was not unlocked at end of function
}

Google Confidential and Proprietary

Subtleties: parsing
● Thread safety annotations use gcc attributes.
● Extend lexical scope to attributes.
● Late parsing of attributes.

class MyObject {
public:
 int a GUARDED_BY(this->Mu);
 void foo(MyObject &O) EXCLUSIVE_LOCKS_REQUIRED(O.Mu);

private:
 Mutex Mu;
};

Google Confidential and Proprietary

Subleties: substitution
● A lock is identified by an expression.
● Subsitute arguments for parameters in scope.

class MyObject {
public:
 Mutex Mu;
 int a GUARDED_BY(this->Mu);
 void foo(MyObject &O) EXCLUSIVE_LOCKS_REQUIRED(O.Mu);
}

void bar(MyObject &O1, MyObject &O2) {
 O1.a = 1; // substitute &O1 for this, get (&O1)->Mu
 O1.foo(O2); // substitute O2 for O, get O2.Mu
}

Google Confidential and Proprietary

Subtleties: expression equality

● Need to compare lock expressions for equality.
(Substitution frequently creates minor variations.)
(&Obj)->Mu == Obj.Mu?
Obj == *&Obj?
Obj.getMutex() == Obj.getMutex()? (Yes)
ObjArray[i+1].Mu == ObjArray[1+i].Mu? (No)

● Varying variables: (We could really use SSA here.)

 void foo(ListNode *N) {
 N->lock();
 N = N->next();
 N->unlock(); // Oops!
 }

Google Confidential and Proprietary

Limitations: control flow
● The following will not pass the analyzer:

 void foo() {
 if (threadsafe) Mu.lock();
 ...
 if (threadsafe) Mu.unlock();

 }

● Or worse: (yes, people do this.)

 void foo() {
 for (int i = 0; i < 10; ++i) MutexArray[i].lock();
 ...
 for (int i = 0; i < 10; ++i) MutexArray[i].unlock();
 }

Google Confidential and Proprietary

Limitations: aliasing
● Aliasing causes problems:

class ScopedMutex {
 Mutex *Mu;
 ScopedMutex(Mutex *M) EXCLUSIVE_LOCK_FUNCTION(M)
 : Mu(M)
 { Mu->lock(); }
 ~ScopedMutex() UNLOCK_FUNCTION(Mu) { Mu->unlock(); }
};

void foo(Mutex *M) {
 ScopedMutex SMu(M);
 // Warning: lock M is not released at end of function
 // Warning: releasing lock Smu.Mu that was not acquired
}

Google Confidential and Proprietary

Current GCC implementation
● GCC implementation has many problems.

● Evil parser hacks to resolve scoping issues.
● Analysis operates on GIMPLE.

○ Lowering to GIMPLE introduces artifacts.
○ Original C++ semantics are lost. E.g.

■ missing type information.
■ virtual method calls.
■ control flow graph oddities.

● Some optimizations run before the analysis.
● Lowering algorithm changes with each gcc release.

Google Confidential and Proprietary

Clang implementation
● Advantage: much better organized code base.

○ E.g. altering the parser.

● Advantage: accurate representation of C++ AST
○ No lowering artifacts!

● Disadvantage: accurate representation of C++ AST
○ No SSA.
○ Difficult to identify loads and stores.
○ Very complicated AST

■ GCC: function call
■ Clang: function, constructor, new, destructor, etc.

○ Hard to compare expressions.

Google Confidential and Proprietary

Huh?
Current challenges and future work.

Google Confidential and Proprietary

Looking forward

● Move analysis to static analyzer.
● Use C++11 attributes.
● Integrate thread safety attributes with type system.

○ Type checking?
○ Templates?

● Some questions to think about.
● We welcome advice from the clang community!

Google Confidential and Proprietary

Move to static analyzer
● Clang AST is much harder to analyze than a compiler

intermediate language.

● Several capabilities are not provided by the AST.
○ No SSA form.

■ (Varying variables problem)
○ Hard to identify loads and stores.

■ a + 1; // load from a.
■ b = &a; // no load.
■ foo(a); // depends on declaration of foo.

● Static analyzer provides some of these capabilities.
○ Also better support for aliasing.
○ Also better support for more complex control flow.

Google Confidential and Proprietary

Integrate with type system
● PT_GUARDED_BY is a hack, and easy to break.
 int *a PT_GUARDED_BY(Mu);
 int *b = a; // OK. Only looked at pointer.
 *b = 1; // No warning!

● Attributes should be associated with types, not
declarations, using C++11 attributes. E.g.

 int [[guarded_by(Mu)]] *a;
● Casting away the guard is like casting away const.

● Question: How invasive would this be to clang type

checking?

Google Confidential and Proprietary

Templates! (Oh no.)
● It would be nice to use attributes with templates, e.g.
 std::vector<int [[guarded_by(Mu)]]>

● Attributes should have erasure property:
○ Removing them should not affect run-time behavior.

● Different instantiations should share implementation.
std::vector<int [[guarded_by(Mu)]]> (same impl. as)
std::vector<int>

● But... attributes should still be visible.
int [[guarded_by(Mu)]]& operator[]() versus
int& operator[]()

● Question: How do we implement this?

Google Confidential and Proprietary

Conclusion

● Thread safety attributes solve a real problem.
● Lots of work still needs to be done.

○ Current implementation is pre-alpha right now.

● E-mail suggestions to:

delesley@google.com

