
Register Allocation
in

LLVM 3.0

Jakob Stoklund Olesen

Talk Overview

• Register allocation in LLVM

• What’s wrong with linear scan?

• The new LLVM 3.0 register allocator

• Global live range splitting

• Future work

Register Allocation in LLVM

Instruction Selection

Scheduling

Register Allocation

MC

SS
A

This is a simplified view of the LLVM code generator.
Instruction selection and scheduling works on SSA form.
The register allocator takes the code out of SSA form and replaces virtual registers with
physical registers.

Register Allocation in LLVM

“Need to tidy the infrastructure”
- Lang Hames

“Linear scan is not, in fact, linear”
- Lang Hames

“Major bookkeeping nightmare”
- Evan Cheng

Linear scan since 2004

LLVM has used a linear scan register allocator since 2004.
It has worked very well for users, but judging from previous register allocator talks, LLVM
developers have not been happy.
The code needs to be cleaned up, but I want to talk about more fundamental problems.

Eliminate virtual registers and SSA

Optimize code speed and size

 movs r0, #10
loop:
 sub r0, r1
 str r7, [r8, r0]
 cbnz r0, loop

 %v1 = movs #10
loop:
 %v2 = phi %v1, %v3
 %v3 = sub %v2, %v0
 str %v50, [%v51, %v3]
 cbnz %v3, loop

Register Allocation in LLVM

Let’s take a look at what register allocation does in LLVM.
What problem are we trying to solve?

“Register allocation can then be
reduced to the problem of K-coloring
the resulting [interference] graph,
where K is the number of registers
available on the target architecture.”

- Wikipedia

How?

How does the register allocator do this?
Wikipedia says the problem is isomorphic to graph coloring.
That’s only a small part of the problem. There is a lot more to it than that.

http://en.wikipedia.org/wiki/Graph_coloring#Vertex_coloring
http://en.wikipedia.org/wiki/Graph_coloring#Vertex_coloring

Graph Coloring

• Interference graph is expensive to build

• Spill code placement is more important
than coloring

• Need to model aliases and overlapping
register classes

• Flexibility is more important than the
coloring algorithm

RA Techniques

• Insert spill / fill

• Insert copies

• Change instructions

• Move code around

• Duplicate instructions

 %v1 = movs #10
loop:
 %v2 = phi %v1, %v3
 %v3 = sub %v2, %v0
 str %v50, [%v51, %v3]
 cbnz %v3, loop

The most common register allocator operation is to assign a virtual register to a stack slot
and insert spill and fill instructions.
In the example, we are unable to find a register for %v0 in the whole function, so it is spilled.

• Insert spill / fill

• Insert copies

• Change instructions

• Move code around

• Duplicate instructions

 movs r0, #10
loop:
 ldr r1, [sp, #4] ; fill from stack
 sub r0, r1
 str r7, [r8, r0]
 cbnz r0, loop

RA Techniques

We could insert a fill instruction to load the value right before it is used.
However, it is very important to place spill and fill instructions carefully to optimize code
speed.
- In this case, the fill can be placed outside the loop, so it will only execute once.

• Insert spill / fill

• Insert copies

• Change instructions

• Move code around

• Duplicate instructions

 movs r0, #10
 ldr r1, [sp, #4] ; fill from stack
loop:
 sub r0, r1
 str r7, [r8, r0]
 cbnz r0, loop

RA Techniques

We are effectively splitting the live range of %v0 into two parts.
The part inside the loop is assigned to r1. The part outside the loop is assigned to a stack
slot.
Spill code placement and live range splitting is a very important optimization.

• Insert spill / fill

• Insert copies

• Change instructions

• Move code around

• Duplicate instructions

func:
 ; %v0 is 1st func argument
 %v2 = call foo
 %v3 = sub %v2, %v0

RA Techniques

Another register allocator trick is to insert copy instructions.
Suppose %v0 is a function argument in r0, and we want to use it after a function call.
Copy the value to a callee saved register before the function call.

• Insert spill / fill

• Insert copies

• Change instructions

• Move code around

• Duplicate instructions

func:
 %v17 = copy %v0
 %v2 = call foo
 %v3 = sub %v2, %v17

RA Techniques

Now, %v17 can be assigned to r4, a callee-saved register.

• Insert spill / fill

• Insert copies

• Change instructions

• Move code around

• Duplicate instructions

func:
 mov r4, r0
 call foo

 sub r0, r4

func:
 str r0, [sp]
 call foo
 ldr r1, [sp]
 sub r0, r1

RA Techniques

The alternative would be to spill the register.

• Insert spill / fill

• Insert copies

• Change instructions

• Move code around

• Duplicate instructions

 ; *p++ = %v0
 %v2 = str %v0, [%v1], #4
 cmp %v1, %v10
 beq loop

RA Techniques

The register allocator can also change the machine code instructions.
Here we have a store instruction with address write-back.
The input address in %v1 and the updated address in %v2 must be assigned the same
physical register.
That means we won’t be able to use %v1 after the store unless we copy it first.
We can turn the store with write-back into a store and an add instead.

• Insert spill / fill

• Insert copies

• Change instructions

• Move code around

• Duplicate instructions

 str %v0, [%v1] ; *p = %v0
 %v2 = add %v1, #4
 cmp %v1, %v10
 beq loop

RA Techniques

Now, %v1 and %v2 can be assigned to different physical registers, r1 and r2.

• Insert spill / fill

• Insert copies

• Change instructions

• Move code around

• Duplicate instructions

 str r0, [r1]
 add r2, r1, #4
 cmp r1, r7
 beq loop

 mov r2, r1
 str r0, [r2], #4
 cmp r1, r7
 beq loop

RA Techniques

• Insert spill / fill

• Insert copies

• Change instructions

• Move code around

• Duplicate instructions

 %v2 = str %v0, [%v1], #4
 cmp %v1, %v10
 beq loop

RA Techniques

Another way to solve the same problem is to rearrange the instructions.
By moving the compare in front of the store, the interference is resolved.

• Insert spill / fill

• Insert copies

• Change instructions

• Move code around

• Duplicate instructions

 cmp %v1, %v10
 %v2 = str %v0, [%v1], #4
 beq loop

RA Techniques

Now the store is the last use of %v1, and we can allocate the same register to %v1 and %v2.

• Insert spill / fill

• Insert copies

• Change instructions

• Move code around

• Duplicate instructions

 cmp r1, r7
 str r0, [r1], #4
 beq loop

 mov r2, r1
 str r0, [r2], #4
 cmp r1, r7
 beq loop

RA Techniques

Now the store is the last use of %v1, and we can allocate the same register to %v1 and %v2.

• Insert spill / fill

• Insert copies

• Change instructions

• Move code around

• Duplicate instructions

 %v0 = movs #10000
 %v1 = ldr [%v8, %v0]
 ; ... Lots of code

loop:
 %v2 = phi %v1, %v3
 %v3 = sub %v2, %v0
 cbnz %v3, loop

RA Techniques

Finally, the register allocator can duplicate instructions.
Constants are often put in registers early in the function.
Duplicating these instructions is cheap, and it reduces register pressure.

• Insert spill / fill

• Insert copies

• Change instructions

• Move code around

• Duplicate instructions

 %v0 = movs #10000
 %v1 = ldr [%v8, %v0]
 ; ... Lots of code
 %v54 = movs #10000
loop:
 %v2 = phi %v1, %v3
 %v3 = sub %v2, %v54
 cbnz %v3, loop

RA Techniques

Just like spill / fill instructions, it is important to place the duplicated instructions carefully.
Here we materialize the constant outside the loop.

Linear Scan

• Insert spill / fill

• Move code around

• Duplicate instructions

 %v1 = movs #10
loop:
 %v2 = phi %v1, %v3
 %v3 = sub %v2, %v0
 str %v50, [%v51, %v3]
 cbnz %v3, loop

The linear scan allocator visits instructions in top-down order.
How do these techniques work with linear scan?
Obviously, linear scan can insert spill/fill instructions.

Linear Scan

• Insert spill / fill

• Move code around

• Duplicate instructions

 movs r0, #10
loop:
 ldr r1, [sp, #4] ; fill from stack
 sub r0, r1
 str r7, [r8, r0]
 cbnz r0, loop

But the fill is inserted right before the instruction that uses the value.
There is no global live range splitting.

Linear Scan

• Insert spill / fill

• Move code around

• Duplicate instructions

 ; str with address write-back
 %v2 = str %v0, [%v1], #4
 cmp %v1, %v10
 beq loop

How about rearranging instructions?
This doesn’t work either since the str is already done when we see the cmp.

Linear Scan

• Insert spill / fill

• Move code around

• Duplicate instructions

 %v0 = movs #10000
 %v1 = ldr [%v8, %v0]
 ; ... Lots of code
loop:
 %v2 = phi %v1, %v3
 %v54 = movs #10000
 %v3 = sub %v2, %v54
 cbnz %v3, loop

Linear scan can duplicate instructions.
Only immediately before the value is used.
Cannot take advantage of freed register in visited code.

Linear Scan

• Rewriter is very complicated

• Maintenance liability

Rewrite

Spill

Assign

RA Compile Time

The rewriter runs after linear scan as a peephole pass.
It cleans up a lot of the bad code.
It is quite expensive, a full third of the compile time.
It is very tricky source code.

LLVM 3.0 Register Allocator

The LLVM 3.0 register allocator was designed to address these problems.

Design Goals

• Support existing constraints

• Don’t regress compile time

• Full live range splitting

• Edit machine code in flight

• Enable future improvements

• Eliminate complicated rewriter

Support overlapping register classes, sub-registers just like linear scan.

Q0

Q1

vreg1

vreg3

vreg2

vreg4

vreg5

D0

D1

D2

D3

• Order live ranges by size

• Allocate the longest ranges first

This toy NEON machine has two 128-bit vector registers, each divided into two 64-bit
registers.
We are compiling a function with 5 virtual registers.
- First, order the live ranges by size.
- The two longest live ranges allocate right away.

Q0

Q1

vreg1

vreg3

vreg2

vreg4

vreg5

D0

D1

D2

D3

• No room for vreg1

• Evict the smallest spill weight

stack1

Q0

Q1
vreg3

vreg4

vreg5

D0

D1

D2

D3

vreg1

vreg2

• At this point linear scan spills

• Much too aggressive

Q0

Q1
vreg3

vreg4

vreg5

D0

D1

D2

D3

vreg1

vreg2

• Save vreg2 for later

• Look for splitting opportunities

Q0

Q1

vreg1

vreg3

vreg2a

vreg4

vreg5

D0

D1

D2

D3

vreg2cvreg2b

• Split to match available registers

• Allocate known good fragments

Note that the matrix is full, we know the interference when splitting.
- The two ends allocate immediately.

Q0

Q1

vreg1

vreg3

vreg4

vreg5

D0

D1

D2

D3

vreg2b

vreg2a

vreg2c

• No lesser spill weight to evict

• Splitting won’t help

Q0

Q1

vreg1

vreg3

vreg4

vreg5

D0

D1

D2

D3

vreg2c

stack1

vreg2a

• Spill as a last resort

• All live ranges allocated

LLVM 3.0 Register Allocator

• Any iteration order

• Undo any assignment without backtracking

• Allow arbitrary code changes

• Interference guided live range splitting

• Trivial rewriter

The new algorithm can process live ranges in any order.
Handling long live ranges first gives the best results.

RA Compile Time

Rewrite

Spill

Assign

Linear Scan

Global Split

Rewrite
4%

Spill Split

Assign

LLVM 3.0

Assignment is faster than linear scan, local splitting means less spilling.
- Trivial rewriter is 10x faster.
- We have time for better global live range splitting.

Global Live Range Splitting

• Loops

• Calls

• Arbitrary regions

r0 = fill
r0 += x
spill r0

Splitting around loops is very important.
- We want to move the spill/fill instructions outside the loop.

Global Live Range Splitting

• Loops

• Calls

• Arbitrary regions

r0 = fill

spill r0

r0 += x

It reduces the number of executed spill/fill instructions.

Global Live Range Splitting

• Loops

• Calls

• Arbitrary regions

r0 = fill

spill r0

r0 += xcall err

If a live range crosses a cold call, we don’t want to affect other code.
- Just spill around the call.

Global Live Range Splitting

• Loops

• Calls

• Arbitrary regions

r0 = fill

spill r0

r0 += x
spill r0
call err
r0 = fill

If a live range crosses a call, we don’t want to affect other code.
Just spill around the call.

Global Live Range Splitting

• Loops

• Calls

• Arbitrary regions

r0 = fill

spill r0

call foocall err

r0 += -1
spill r0

r0 = fill
cbnz r0

In a more complicated loop, we may need more complicated regions.
We don’ want to be limited to just splitting around loops.

Global Live Range Splitting

• Start from uses

• Grow region

• Insert spill code

r0 += xcall err

How are regions formed?
Start from the instructions using the live range.
We want to grow the region until we find a cheap place to spill.

Global Live Range Splitting

• Start from uses

• Grow region

• Insert spill code

r0 += xcall err

We want the value to be live-in and live-out in a register on these edges.

Global Live Range Splitting

• Start from uses

• Grow region

• Insert spill code

r0 += xcall err

But then these edges must also be live.

• Start from uses

• Grow region

• Insert spill code

Global Live Range Splitting

r0 += xcall err

This activates new blocks.

• Start from uses

• Grow region

• Insert spill code

Global Live Range Splitting

r0 += xcall err

• Start from uses

• Grow region

• Insert spill code

Global Live Range Splitting

r0 += xcall err

This activates new live-through blocks.

• Start from uses

• Grow region

• Insert spill code

Global Live Range Splitting
r0 = fill

spill r0

r0 += xcall err

Insert spills and fills in the live-through blocks.

• Start from uses

• Grow region

• Insert spill code

Global Live Range Splitting
r0 = fill

spill r0

r0 += x
spill r0
call err
r0 = fill

Insert internal spills and fills for blocks with interference.

Same Compile Time

Rewrite

Spill

Assign

Linear Scan

Global Split

Rewrite

Spill Split

Assign

LLVM 3.0

Global splitting is around 40% of the total compile time.
The LLVM 3.0 register allocator runs in the same compile time as linear scan.

SPECint 2006
Execution TimeExecution Time Code SizeCode Size
x86-64 i386 x86-64 i386

400.perlbench -2.8% 0.7% -1.7% -2.6%
401.bzip2 -2.4% -10.9% -1.6% -3.9%
403.gcc -2.4% -3.7% -1.1% -1.9%
429.mcf 0.4% -0.5% -1.3% -1.4%
445.gobmk -1.7% -0.7% -0.8% -2.3%
456.hmmer -1.2% -5.6% -1.2% -1.8%
458.sjeng -1.5% -3.7% -2.0% -1.5%
462.libquantum -3.2% 2.1% -0.2% -0.6%
464.h264ref -4.7% -16.7% -1.6% -2.3%
471.omnetpp -2.0% 0.0% -1.8% -0.4%
473.astar -8.1% -9.4% -0.1% -0.7%
483.xalancbmk -1.7% -3.3% -0.4% -1.5%

Comparing linear scan to the LLVM 3.0 register allocator.
Global live range splitting gives nearly universal improvements.
Both execution time and code size is improved.
The i386 architecture is more affected because it only has 8 registers.

Future Work

• Reorder instructions

• Generalized rematerialization

• Dynamic calling conventions

• Register sequences

• Improved splitting

 cmp r1, r7
 str r0, [r1], #4
 beq loop

 mov r2, r1
 str r0, [r2], #4
 cmp r1, r7
 beq loop

Reorder and perhaps reassociate instructions.

Future Work

• Reorder instructions

• Generalized rematerialization

• Dynamic calling conventions

• Register sequences

• Improved splitting

%v1 = movw #abcd
%v2 = movt %v1, #1234

Rematerialize multiple chained instructions.

Future Work

• Reorder instructions

• Generalized rematerialization

• Dynamic calling conventions

• Register sequences

• Improved splitting

coldcall
GHC

Handle multiple calling conventions at once.

Future Work

• Reorder instructions

• Generalized rematerialization

• Dynamic calling conventions

• Register sequences

• Improved splitting

vld1 {d1,d2,d3}, [r1]

Future Work

• Reorder instructions

• Generalized rematerialization

• Dynamic calling conventions

• Register sequences

• Improved splitting

LLVM 3.0 Register Allocator

Greedy?

Region-based

Global

Priority-based?

LLVM 3.0 Register Allocator

• More flexible than linear scan

• Enables future improvements

• Global live range splitting

• Generates faster, smaller code

• Same compile time

http://blog.llvm.org/2011/09/greedy-register-allocation-in-llvm-30.html

http://blog.llvm.org/2011/09/greedy-register-allocation-in-llvm-30.html
http://blog.llvm.org/2011/09/greedy-register-allocation-in-llvm-30.html

Questions?

