
Chromium and Clang

Nico Weber and Hans Wennborg

{thakis, hans} (at) chromium.org

18th November 2011

Chromium: Overview

◮ Chrome is Google’s web browser

◮ First released 2008

◮ ∼ 200 million active users

◮ Chrome is basically Chromium + branding.

Chromium: Lots of code

◮ ∼5 million lines of code

◮ plus 5 million more in libraries:

◮ WebKit, V8, libpng, libjpeg, . . .

◮ 689 committers last 12 months

◮ Good tools are necessary.

Timeline

◮ Dec 2009: First patch mentioning Clang

◮ Apr 2010: LLVM 2.7, C++ support in alpha

◮ Sep 2010: Chrome builds on Linux

◮ Sep 2010: Chrome builds on Mac

◮ Sep 2010: Clang buildbot added to FYI waterfall

Timeline (contd.)

◮ Oct 2010: LLVM 2.8, C++ support complete

◮ Feb 2011: Style plugin

◮ Feb 2011: Clang buildbots move to main waterfall

◮ May 2011: ChromeOS buildbot

Timeline (contd.)

◮ Aug 2011: Mac bots go Clang

◮ Sep 2011: Mac devs are switched to Clang

◮ Oct 2011: Chrome 15: built with Clang on Mac

◮ Nov 2011: This talk.

Advantages of using Clang

Useful warnings

◮ Clang’s warnings are extremely useful

Useful warnings

◮ Clang’s warnings are extremely useful

◮ Look good

Useful warnings

◮ Clang’s warnings are extremely useful

◮ Look good

◮ Good set on by default

Useful warnings

◮ Clang’s warnings are extremely useful

◮ Look good

◮ Good set on by default

◮ Find real issues.

Useful warnings
Example: override bugs

class C {

public:

virtual void foo();

};

class D : public C {

public:

virtual void foo();

};

Useful warnings
Example: override bugs

class C {

public:

virtual void foo() const;

};

class D : public C {

public:

virtual void foo();

};

Useful warnings
Example: -Woverloaded-virtual

a.cc:8:18: warning: ’D::foo’ hides overloaded

virtual function [-Woverloaded-virtual]

virtual void foo();

^

a.cc:3:18: note: hidden overloaded virtual

function ’C::foo’ declared here

virtual void foo() const;

^

1 warning generated.

Useful warnings
Example: override specifier

a.cc:8:16: error: ’foo’ marked ’override’ but does not

override any member functions

virtual void foo(double x) override;

^

1 error generated.

◮ Previously __attribute__(override)

◮ Now part of C++11 support

◮ Used for ∼10k functions

◮ Stops code from breaking all the time.

Useful warnings
Example: did you mean ‘ !=’?

a.cc:2:9: warning: using the result of an assignment as

a condition without parentheses [-Wparentheses]

if (x |= y)

~~^~~~

a.cc:2:9: note: use ’!=’ to turn this compound

assignment into an inequality comparison

if (x |= y)

^~

!=

1 warning generated.

Useful warnings
Example: -Wparentheses, ?:

a.cc:2:16: warning: operator ’?:’ has lower precedence

than ’+’; ’+’ will be evaluated first

return x + b ? y : 0;

~~~~~ ^

a.cc:2:16: note: place parentheses around the ’?:’

expression to evaluate it first

return x + b ? y : 0;

^

( )

1 warning generated.

◮ It’s a bug every time!



Useful warnings
Example: -Wsizeof-pointer-memaccess

a.cc:8:23: warning: argument to ’sizeof’ in ’memset’

call is the same expression as the destination;

did you mean to dereference it?

memset(s, 0, sizeof(s));

~ ^

1 warning generated.



Tools

◮ Clang is more than a compiler

◮ Allows you to build your own tools.



Tools
Chromium style checker

In file included from a.cc:1:

./a.h:8:3: warning: [chromium-style] Overriding method

must have "virtual" keyword.

void foo();

^

1 warning generated.



Tools
Chromium style checker (contd.)

In file included from a.cc:1:

./a.h:3:3: warning: [chromium-style] Complex

constructor has an inlined body.

C() {}

^

1 warning generated.



Tools
V8

◮ Handle<Object> for referencing gc’able memory

Handle<Object> Foo(); // Might trigger a GC.

void Bar(Object*, Object*);

Handle<Object> baz;

Bar(*Foo(), *baz);



Tools
A few rewriter attempts

◮ Make implicit constructor explicit

◮ Done using a plugin

◮ Fixed a few hundred instances, then gave up

◮ New callback mechanism, update all old call sites

◮ Got stuck after 4 days with arcrewrite-based system.



Other tools
AddressSanitizer (ASan)

◮ A fast memory error detector

◮ Finds use-after-free, out-of-bounds access, etc.

◮ Go to the talk: Ballroom Salon I/II at 4:30.



Which Clang to use

◮ We use Clang trunk without local patches

◮ Pull and test new version weekly

◮ Cooperating with other Clang people at Google

◮ When we branch for release, we branch Clang too

◮ Binaries: http://is.gd/chromeclang

http://is.gd/chromeclang


Build numbers
Compile time (Linux)

0

5

10

-O0 -g -O2

T
im

e
(m

in
)

GCC
Clang

Clang r143497, GCC 4.4.3, Chromium r108631, 8 cores, 24 GB



Build numbers
Compile time (Mac)

◮ Mac is also about 30% faster in Debug

◮ Much faster in Release.



Build numbers
Binary size (Linux, Debug)

0

1

2

3

4

5

6

*.o chrome

S
iz

e
(G

B
)

GCC
Clang



Build numbers
Binary size (Mac)

◮ 10% smaller in Release.



Build numbers
Interlude: A few numbers

◮ 10k files @ 16 cores, ∼2 s / file ⇒ 20 min local build
time

◮ @ 50 kB / .o, 3MB / s link ⇒ 2.5 min

◮ .o file size matters!



Build numbers
Performance



Build numbers
Performance



Passing thoughts

◮ <3 diagnostics

◮ <3 clang code base

◮ <3 the way clang is run

◮ <3 using clang to write own tools

◮ Please make it easier to write tools.



◮ That’s all!

◮ Send cakes to clang@chromium.org

◮ code.google.com/p/chromium/wiki/Clang

http://code.google.com/p/chromium/wiki/Clang

	Chromium
	Timeline
	Advantages of using Clang
	Warnings
	Tools
	Other tools

	Practical concerns
	Which Clang to use
	Build numbers
	Build numbers

	Passing thoughts
	Passing thoughts

