Tutorial: Building a
backend in 24 hours

Anton Korobeynikov
anton@korobeynikov.info



mailto:anton@korobeynikov.info
mailto:anton@korobeynikov.info

Qutline

|. From IR to assembler: codegen pipeline
2. MC
3. Parts of a backend

4. Example step-by-step



The Pipeline

LLVM IR—> IR Passes

DAG | aoali DAG
Combine cgallze Combine

SDAG

Ml

i

ObjeCt File Assembler Binar)’ Code




LLVM IR—> IR Passes



IR Level Passes

Why!?
® Some things are easier to do at IR level
® Simplifies codegen
® Safer (pass pipeline is much more fixed)



IR Level Passes

Why!?
® Some things are easier to do at IR level
® Simplifies codegen
® Safer (pass pipeline is much more fixed)

What is done?
® |ate opts (LSR, elimination of dead BBs)

® |R-level lowering: GC, EH, stack protector
® Custom pre-isel passes
® CodeGenPrepare



ER Lowering

Why!
® TJo simplify codegen



ER Lowering

Why!
® TJo simplify codegen

What is done!

® | owering of EH intrinsics to unwinding
runtime constructs (e.g. sjlj stuff)



CodeGenPrepare

Why?
® Jo workaround BB-at-a-time codegen



CodeGenPrepare

Why?
® Jo workaround BB-at-a-time codegen

What is done!?
® Addressing mode-related simplifications

® [nline asm simplification (e.g. bswap patterns)
® Move debug stuff closer to defs



1 DAG | el DAG Sel
ower Combine cgallze Combine €



Selection DAG

First strictly backend IR
Even lower level than LLVM IR

Use-def chains + additional stuff to keep
things in order

Built on per-BB basis



DAG-level Passes

Lowering
Combine
Legalize

Combine

Instruction Selection



DAG Combiner

Optimizations on DAG
Close to target
Runs twice - before and after legalize

Used to cleanup / handle optimization
opportunities exposed by targets



DAG Legalization

Turn non-legal operations into legal one



DAG Legalization

Turn non-legal operations into legal one

Examples:
® Software floating point
® Scalarization of vectors

® Widening of “funky” types (e.g.42)



Instruction Selection

Turns SDAGSs into Mls

Uses target-defined patters to select instructions
and operands

Does bunch of magic and crazy pattern-matching

Target can provide “fast but crude” isel for -O0
(fallbacks to standard one if cannot isel something)






Machine™

Yet another set of IR: Machinelnst + MachineBB +
MachineFunction

Close to target code

Pretty explicit: set of impdef regs, basic block live
in / live out regs, etc.

Used as IR for all post-isel passes



Pre-RA Passes

Pre-RA tail duplication

PHI optimization
MachineLICM, CSE, DCE

More peephole opts



Pre-RA Passes

Pre-RA tail duplication

PHI optimization
MachineLICM, CSE, DCE

More peephole opts

Code is still in SSA form!



Register Allocator

® [ast
® Greedy (default)
e PBQP



o U~ W N

Post-RA Passes

Prologue / Epilogue Insertion &
Abstract Frame Indexes Elimination

Branch Folding & Simplification
Tail duplication

Reg-reg copy propagation
Post-RA scheduler

BB placement to optimize hot paths



MC Streamers

VTR

ObjeCt Flle Assembler Binar)’ COde



“Assembler Printing”

® | ower Ml-level constructs to MClnst

® | et MCStreamer decide what to do next:
emit assembler, object file or binary code
Into memory



Customization

Target can insert its own passes in specific points
in the pipeline (e.g. after isel or before scheduler)



Customization

Target can insert its own passes in specific points
in the pipeline (e.g. after isel or before scheduler)

Examples:

® |T block formation, load-store optimization on ARM

® Delay slot filling on MIPS or Sparc



The Backend

Standalone library
Mixed C++ code + TableGen

TableGen is a special DSL used to describe register
sets, calling conventions, instruction patterns, etc.

Inheritance and overloading are used to augment
necessary target bits into target-independent
codegen classes



Stub Backend

How much code we need to create no-op
backend!?



Stub Backend

How much code we need to create no-op
backend!?



Stub Backend

How much code we need to create no-op
backend!?

Some decent amount:

® |5 classes

® around |k LOC (both C++ and
TableGen)



Foo largetMachine

® Central class in each backend
® Glues (almost) all the backend classes

® Controls the backend pipeline



FooSubtarget

® Several “subtargets’ inside one target

® Usually used to model different instruction
sets, platform-specific things, etc.

® Done via “subtarget features”



FooRegisterlnfo

Provides various information about register sets:
|. Callee saved regs
Reserved (non-allocable) regs

Register allocation order

W N

Register classes for cross-class copying &
coalescing



FooRegisterlnfo

Provides various information about register sets:
|. Callee saved regs
Reserved (non-allocable) regs

Register allocation order

How N

Register classes for cross-class copying &
coalescing

Partly autogenerated from FooRegisterlInfo.td



FooRegisterinfo.td

TableGen description of:
|. Registers,
2. Sub-registers (and aliasing sets for regs)

3. Register classes



FoolSelLowering

Central class for target-aware lowering

Turns target-neutral SelectionDAG in target-aware
(suitable for instruction selection)

Something can be lowered (albeit not efficiently) in
generic way

Some cases (e.g.argument lowering) always
require custom lowering



FooCallingConv.td

Describes the calling convention:

|. What & where & in which order should be
passed

2. Not self-containing: used to simplify custom
lowering routines

3. Autogenerate set of callee-save registers



FoolSel DAGToDAG

® Does most of instruction selection

® Most of C++ code is autogenerated from
Instruction patterns

® Custom instruction selection code:

® Complex addressing modes
® |nstructions which require additional care



Foolnstrinfo

Hooks used by codegen to:
|. Emit reg-reg copies
2. Save / restore values on stack
3. Branch-related operations

4. Determine instruction sizes



Foolnstrinfo.td

Defines the instruction patterns:
® DAG: level of input & output operands
® MI:Instruction Encoding

® ASM:Assembler printing strings



Foolnstrinfo.td

Defines the instruction patterns:

® DAG: level of input & output operands
® Mil:Instruction Encoding

® ASM:Assembler printing strings

TableGen magic can autogenerate many things



Foolnstinfo.td




Foolnstinfo.td




Foolnstinfo.td




Foolnstinfo.td




Foolnstinfo.td




FooFramelowering

Hooks connected with function stack frames:

|. Prologue & epilogue expansion
2. Function call frame formation

3. Spilling & restoring of callee saved regs



FooMClnstPrinter

® Target part of generic assembler printing code



FooMClnstPrinter

® Target part of generic assembler printing code

® Specifies how a given MClnst should be
represented as an assembler string:

|. Instruction opcodes, operands
2. Encoding of immediate values,

3. Workarounds for assembler bugs :)



What’s not covered!

MC-level stuff: MC{Asm,Instr,Reg}Info

Assemblers and disassemblers

Direct object code emission

Ml-level (post-RA) scheduler



OpenRISC

IP core, not a real CPU chip
Straightforward 32-bit RISC CPU
32 regs

3 address instructions

Rich instruction set



The Goal

Make the following IR to yield the valid assembler:

define void @foo() {
entry:
ret void

}




Triple

® Make sure the desired target triple is
recognized: include/AD T/Triple.h & lib/

Support/Triple.cpp
® Add“or32” entry

® Add“or32 = openrisc backend” mapping



Stub classes

® Provide stub implementations of all
necessary |5 backend classes :(

® Hook them into build system



Stub classes

® Provide stub implementations of all
necessary |5 backend classes :(

® Hook them into build system

Maybe it’s a good idea to add ‘stub’ backend to the tree



Registers

Define all registers and register classes:




Calling Convention




Some hooks

copyPhysReg()

blank emitPrologue() / emitEpilogue()
hasFP()

getReservedRegs()
getCalleeSavedRegs()



Some boilerplate

o ADJCALLSTACKUP /ADJCALLSTACKDOWN
pseudo instructions

® Make sure lowering knows about “native”
integer type and register classes



LowerFormalArguments

|. Assign locations to all incoming arguments
(depending on their type)

2. Copy arguments passed in registers

3. Create frame index objects for arguments
passed on stack

4. Create SelectionDAG nodes for loading of
stack arguments



Ml to MC

® The lowering Ml to MC is straightforward:




MClinst Printing

® Printing is easy as well:




First Instruction

® Add pattern for function return instruction:




Clang

® \Want to write tescases in C?



Clang

® \Want to write tescases in C?
® Hook in clang!

® One has to provide Targetinfo (pretending
the toolchain looks binutils-ish)

® Detailed toolchain description can be
added later



Next steps

Reg-reg arithmetic instructions

Loads / stores: matching address modes
Proper function frame formation

Delay slot filling (with NOPs for now)

Branch folding hooks



Q&A



