
C/C++
Source

Scout
Source

Clang
Parser

Abstract Syntax Tree

Clang's
LLVM IR

Generator

LLVM IR

; ModuleID = '/tmp/webcompile/_31878_0.bc'
target datalayout = "e-p:64:64i1:8:8-i8:8:8target triple
"x86_64-unknown-linux-gnu"

@.str = private unnamed_addr constant [4 x i8] c"%d\0A\00",
align 1

define i32 @factorial(i32 %X) nounwind uwtable readnone {
 %1 = icmp eq i32 %X, 0
 br i1 %1, label %tailrecurse._crit_edge, label
%tailrecurse

tailrecurse: ; preds =
%tailrecurse, %0
 %X.tr2 = phi i32 [%2, %tailrecurse], [%X, %0]
 %accumulator.tr1 = phi i32 [%3, %tailrecurse], [1, %0]
 %2 = add nsw i32 %X.tr2, -1
 %3 = mul nsw i32 %X.tr2, %accumulator.tr1
 %4 = icmp eq i32 %2, 0

LLVM
Optimizer

- General-purpose constructs
- Domain-specific constructs
- Compiler stages

Clang
Rewriter

(Augmented
to parse Scout)

(Modified to generate
calls to Scout's

Runtime Library)

(Added LLVM passes
for GPU kernels

and vectorization)

LLVM AMD
IL Backend

LLVM PTX
Backend

LLVM x86
Backend x86

PTX

AMD
IL

Display

Disk
DiskStored

Data

Simulation Processes
Simulation ProcessesVisualization &

Analysis on
CPUs

Stored
Images/
Analysis

Simulation Step Post-Processing Step

Traditional Scientific Workflow

In Situ Scientific Workflow

Simulation
Processes on

CPUs

Display
GPU

Software
Rendering

Simulation on
Accelerated
Hardware

Viz/Analysis on
Accelerated
Hardware

Simulation
Processes on

CPUs

Simulation,
Visualization and

Analysis on
Accelerated
Hardware

Display
GPU

Display

Disk
DiskStored Data/

Images/
Analysis

Scout: Using Clang/LLVM to Build a Domain-Specific Language
For In-Situ Data Analysis and Visualization on Emerging Architectures

Acknowledgments

This work was supported in full by the DOE Office of Science, Advanced
Scientific Computing Research, program manager Lucy Nowell.

Patrick McCormick*, James Jablin**, Nick Moss*, Christine Ahrens*, Dean Prichard*, Marion (Kei) Davis*
*Los Alamos National Laboratory, **Brown University

Objective of Scout Project

 Today’s large-scale scientific applications must be able to run
on rapidly changing processor architectures and require
computation, data analysis and visualization of increasingly large
amounts of data.

 The purpose of the Scout project is to explore building a
domain-specific programming language and development
toolchain that can support existing scientific applications on
emerging architectures without having to significantly rewrite or
refactor code.

 In situ Scout code can do computation, numerical or visual
analysis on the data without storing it to file or post-processing.

The Scout Language

Scout’s conservative extensions to C/C++ currently provide:
•  A computational mesh abstraction that supports 1, 2 and 3D-mesh

elements including mesh members (fields) for cells, vertices and points.
•  Parallel forall over meshes or arrays for general processing.
•  Parallel renderall over meshes for visualization of 2 or 3D datasets.
•  Access to mesh element neighbors via cshift operation.
•  Filtering ability for parallel constructs via where clause.
•  Support for two-, three-, and four-component vector types.
•  Stand-alone or in situ Scout programs.
•  Parallel constructs running on single or multiple CPU cores or GPU.

Figure 3. Declare, define and initialize uniform mesh.

Conclusions

Using Clang/LLVM for implementing Scout provides/allows:
•  Code generation built-in for different targets
•  Reduced learning curve and overall development time
•  Future integration of LLVM toolchain elements such as LLDB and JIT.
•  More focus on research rather than building compiler from scratch
Would like to be able to modify the Clang AST for the implementation of
some Scout constructs, but can use rewriter.

How Scout Uses Clang/LLVM

•  Scout language constructs (conservative extensions to C/C++) are added

to the Clang lexer and are parsed into an AST representation containing
Clang tree nodes and domain-specific tree nodes.

•  When the AST is lowered to LLVM IR the domain-specific regions of code
are translated to various constructs:

o  Mesh declarations are translated into specialized data structures
and mesh element setters and getters are created.

o  Forall and 2D mesh renderall constructs are handled by creating
a closure for the body of the construct. The runtime library
places them in a work-stealing queue in the multi-core case.

o  3D mesh renderall constructs become closures that are passed
to a runtime library volume renderer. Rewriter is used for this.

o  If compiling for GPU, GPU kernel metadata is saved for later use.
•  LLVM passes handle GPU kernels and enable vectorization for CPU.

Figure 5. Scout’s augmented Clang/LLVM compiler.

// Declare a uniform mesh with fields stored!
// at cell centers and mesh vertices. !
uniform mesh UniMesh {!
 cells : float temp, rho; !
 vertices: float3 velocity;!
};!
!
// Define a 2D instance of the mesh. !
UniMesh umesh[256,256];!
!
// Initialize all mesh fields to zero. !
forall cells c of umesh!
 c.temp = c.rho = 0.0; !
forall vertices v of umesh!
 v.velocity = 0.0; !
!

// Render every cell of in the mesh 'umesh'!
// assigning a color to each cell. !
renderall cells c of umesh {!
!
 // Map temperature into hue range of!
 // blue (cold) to red (hot). !
 float hue = 240.0 -!

!(240.0 * (c.temp/MAX_TEMP));!
!
 // Assign color to the current cell (c)!
 // by converting hue-saturation-value !
 // color to the built-in rgba 'color'. !
 color = hsv(hue, 1.0, 1.0);!
}!
!

Figure 4. Use renderall to produce an image of the mesh cells. Figure 2. Heat transfer applications using Scout run on CPU, multicore or GPU

LA-UR-12-25846

Figure 1. Post-processing model vs. In Situ via Scout

