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; ModuleID = '/tmp/webcompile/_31878_0.bc'
target datalayout = "e-p:64:64i1:8:8-i8:8:8target triple 
"x86_64-unknown-linux-gnu"

@.str = private unnamed_addr constant [4 x i8] c"%d\0A\00", 
align 1

define i32 @factorial(i32 %X) nounwind uwtable readnone {
  %1 = icmp eq i32 %X, 0
  br i1 %1, label %tailrecurse._crit_edge, label 
%tailrecurse

tailrecurse:                                      ; preds = 
%tailrecurse, %0
  %X.tr2 = phi i32 [ %2, %tailrecurse ], [ %X, %0 ]
  %accumulator.tr1 = phi i32 [ %3, %tailrecurse ], [ 1, %0 ]
  %2 = add nsw i32 %X.tr2, -1
  %3 = mul nsw i32 %X.tr2, %accumulator.tr1
  %4 = icmp eq i32 %2, 0
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Scout:  Using Clang/LLVM to Build a Domain-Specific Language  
For In-Situ Data Analysis and Visualization on Emerging Architectures  
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Objective of Scout Project 
 

 Today’s large-scale scientific applications must be able to run 
on rapidly changing processor architectures and require 
computation, data analysis and visualization of increasingly large 
amounts of data.   

 The purpose of the Scout project is to explore building a 
domain-specific programming language and development 
toolchain that can support existing scientific applications on 
emerging architectures without having to significantly rewrite or 
refactor code.   

 In situ Scout code can do computation, numerical or visual 
analysis on the data without storing it to file or post-processing. 
 

The Scout Language 
 
Scout’s conservative extensions to C/C++ currently provide: 
•  A computational mesh abstraction that supports 1, 2 and 3D-mesh 

elements including mesh members (fields) for cells, vertices and points.  
•  Parallel forall over meshes or arrays for general processing. 
•  Parallel renderall  over meshes for visualization of 2 or 3D datasets. 
•  Access to mesh element neighbors via cshift operation. 
•  Filtering ability for parallel constructs via where clause. 
•  Support for two-, three-, and four-component vector types. 
•  Stand-alone or in situ Scout programs. 
•  Parallel constructs running on single or multiple CPU cores or GPU. 

Figure 3. Declare, define and initialize uniform mesh. 

Conclusions  
 
Using Clang/LLVM for implementing Scout provides/allows: 
•  Code generation built-in for different targets 
•  Reduced learning curve and overall development time 
•  Future integration of LLVM toolchain elements such as LLDB and JIT. 
•  More focus on research rather than building compiler from scratch 
Would like to be able to modify the Clang AST for the implementation of 
some Scout constructs, but can use rewriter. 
 

How Scout Uses Clang/LLVM 
 
•  Scout language constructs (conservative extensions to C/C++) are added 

to the Clang lexer and are parsed into an AST representation containing 
Clang tree nodes and domain-specific tree nodes.   

•  When the AST is lowered to LLVM IR the domain-specific regions of code 
are translated to various constructs:  

o  Mesh declarations are translated into specialized data structures 
and mesh element setters and getters are created.   

o  Forall and 2D mesh renderall constructs are handled by creating 
a closure for the body of the construct. The runtime library 
places them in a work-stealing queue in the multi-core case. 

o  3D mesh renderall constructs become closures that are passed 
to a runtime library volume renderer.  Rewriter is used for this. 

o  If compiling for GPU, GPU kernel metadata is saved for later use. 
•  LLVM passes handle GPU kernels and enable vectorization for CPU. 

Figure 5. Scout’s augmented Clang/LLVM compiler. 

// Declare a uniform mesh with fields stored!
// at cell centers and mesh vertices. !
uniform mesh UniMesh {!
 cells   : float temp, rho; !
 vertices: float3  velocity;!
};!
!
// Define a 2D instance of the mesh. !
UniMesh umesh[256,256];!
!
// Initialize all mesh fields to zero. !
forall cells c of umesh!
  c.temp = c.rho = 0.0; !
forall vertices v of umesh!
  v.velocity = 0.0; !
!

// Render every cell of in the mesh 'umesh'!
// assigning a color to each cell.  !
renderall cells c of umesh {!
!
  // Map temperature into hue range of!
  // blue (cold) to red (hot). !
  float hue = 240.0 -!

!(240.0 * (c.temp/MAX_TEMP));!
!
  // Assign color to the current cell (c)!
  // by converting hue-saturation-value !
  // color to the built-in rgba 'color'. !
  color = hsv(hue, 1.0, 1.0);!
}!
!

Figure 4. Use renderall to  produce an image of the mesh cells. Figure 2.  Heat transfer applications using Scout run on CPU, multicore or GPU 
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Figure 1.  Post-processing model vs. In Situ via Scout 


