
Timur Iskhodzhanov, Alexander Potapenko,
Alexey Samsonov, Kostya Serebryany,

Evgeniy Stepanov, Dmitry Vyukov

LLVM developers' meeting, Nov 8 2012

ThreadSanitizer, MemorySanitizer

Scalable run-time detection of
uninitialized memory reads and data races

with LLVM instrumentation

● AddressSanitizer (aka ASan)
○ recap from 2011
○ detects use-after-free and buffer overflows (C++)

● ThreadSanitizer (aka TSan)
○ detects data races (C++ & Go)

● MemorySanitizer (aka MSan)
○ detects uninitialized memory reads (C++)

● Similar tools, find different kinds of bugs

Agenda

AddressSanitizer (recap from 2011)

● Finds
○ buffer overflows (stack, heap, globals)
○ use-after-free
○ some more

● LLVM compiler module (~1KLOC)
○ instruments all loads/stores
○ inserts red zones around Alloca and GlobalVariables

● Run-time library (~10KLOC)
○ malloc replacement (redzones, quarantine)
○ Bookkeeping for error messages

ASan report example: use-after-free

int main(int argc, char **argv) {
 int *array = new int[100];
 delete [] array;
 return array[argc]; } // BOOM
% clang++ -O1 -fsanitize=address a.cc && ./a.out
==30226== ERROR: AddressSanitizer heap-use-after-free
READ of size 4 at 0x7faa07fce084 thread T0
 #0 0x40433c in main a.cc:4
0x7faa07fce084 is located 4 bytes inside of 400-byte region
freed by thread T0 here:
 #0 0x4058fd in operator delete[](void*) _asan_rtl_
 #1 0x404303 in main a.cc:3
previously allocated by thread T0 here:
 #0 0x405579 in operator new[](unsigned long) _asan_rtl_
 #1 0x4042f3 in main a.cc:2

ASan shadow memory

0xffffffff
0x20000000

0x1fffffff
0x04000000

0x03ffffff
0x00000000

Application

Shadow

mprotect-ed

Virtual address space

char *shadow
 = addr >> 3;
if (*shadow)
 ReportError(a);
*a = ...

*a = ...
Instrumentation

● 2x slowdown (Valgrind: 20x and more)

● 1.5x-4x memory overhead

● 500+ bugs found in Chrome in 1.5 years
○ Used for tests and fuzzing, 2000+ machines 24/7
○ 100+ bugs by external researchers

● 1000+ bugs everywhere else
○ Firefox, FreeType, FFmpeg, WebRTC, libjpeg-turbo,

Perl, Vim, LLVM, GCC, MySQL

ASan marketing slide

Trivial hardware support
may reduce the overhead

from 2x to 20%

Plea to hardware vendors

ThreadSanitizer
data races

ThreadSanitizer v1

● Race detector based on Valgrind

● Used since early 2009

● Slow (20x–300x slowdown)
○ Still, found thousands races
○ Faster & more usable than others

■ Helgrind (Valgrind)
■ Intel Parallel Inspector (PIN)

● WBIA'09

ThreadSanitizer v2 overview

● Simple compile-time instrumentation
○ ~400 LOC

● Redesigned run-time library
○ Fully parallel
○ No expensive atomics/locks on fast path
○ Scales to huge apps
○ Predictable memory footprint
○ Informative reports

TSan report example: data race

void Thread1() { Global = 42; }
int main() {
 pthread_create(&t, 0, Thread1, 0);
 Global = 43;
 ...
% clang -fsanitize=thread -g a.c -fPIE -pie && ./a.out
WARNING: ThreadSanitizer: data race (pid=20373)
 Write of size 4 at 0x7f... by thread 1:
 #0 Thread1 a.c:1
 Previous write of size 4 at 0x7f... by main thread:
 #0 main a.c:4
 Thread 1 (tid=20374, running) created at:
 #0 pthread_create ??:0
 #1 main a.c:3

Compiler instrumentation

void foo(int *p) {
 *p = 42;
}

void foo(int *p) {
 __tsan_func_entry(__builtin_return_address(0));
 __tsan_write4(p);
 *p = 42;
 __tsan_func_exit()
}

Direct shadow mapping (64-bit Linux)

Application
0x7fffffffffff
0x7f0000000000

Protected
0x7effffffffff
0x200000000000

Shadow
0x1fffffffffff
0x180000000000

Protected
0x17ffffffffff
0x000000000000

Shadow = 4 * (Addr & kMask);

Shadow cell
An 8-byte shadow cell represents one memory
access:

○ ~16 bits: TID (thread ID)
○ ~42 bits: Epoch (scalar clock)
○ 5 bits: position/size in 8-byte word
○ 1 bit: IsWrite

Full information (no more dereferences)

TID

Epo

Pos

IsW

4 shadow cells per 8 app. bytes
TID

Epo

Pos

IsW

TID

Epo

Pos

IsW

TID

Epo

Pos

IsW

TID

Epo

Pos

IsW

Example: first access
T1

E1

0:2

W

Write in thread T1

Example: second access
T1

E1

0:2

W

T2

E2

4:8

R

Read in thread T2

Example: third access
T1

E1

0:2

W

T3

E3

0:4

R

T2

E2

4:8

R

Read in thread T3

Example: race?
T1

E1

0:2

W

T3

E3

0:4

R

T2

E2

4:8

R

Race if E1 does not
"happen-before" E3

Fast happens-before

● Constant-time operation
○ Get TID and Epoch from the shadow cell
○ 1 load from thread-local storage
○ 1 comparison

● Similar to FastTrack (PLDI'09)

Shadow word eviction

● When all shadow cells are filled, one random
cell is replaced

Informative reports

● Stack traces for two memory accesses:
○ current (easy)
○ previous (hard)

● TSan1:
○ Stores fixed number of frames (default: 10)
○ Information is never lost
○ Reference-counting and garbage collection

Stack trace for previous access

● Per-thread cyclic buffer of events
○ 64 bits per event (type + PC)
○ Events: memory access, function entry/exit
○ Information will be lost after some time
○ Buffer size is configurable

● Replay the event buffer on report
○ Unlimited number of frames

Function interceptors

● 100+ interceptors
○ malloc, free, ...
○ pthread_mutex_lock, ...
○ strlen, memcmp, ...
○ read, write, ...

Atomics

● LLVM atomic instructions are replaced with
__tsan_* callbacks

%0 = load atomic i8* %a acquire, align 1

%0 = call i8
@__tsan_atomic8_load(i8* %a, i32 504)

TSan slowdown vs clang -O1

Application TSan1 TSan2 TSan1/TSan2

RPC benchmark 40x 7x 5.5x

Web server test 25x 2.5x 10x

String util test
(1 thread)

50x 6x 8.5x

Trophies

● 200+ races in Google server-side apps
(C++)

● 80+ races in Go programs
○ 25+ bugs in Go stdlib

● Several races in OpenSSL
○ 1 fixed, ~5 'benign'

● More to come
○ We've just started testing Chrome :)

Key advantages

● Speed
○ > 10x faster than other tools

● Native support for atomics
○ Hard or impossible to implement with binary

translation (Helgrind, Intel Inspector)

Limitations

● Only 64-bit Linux

● Hard to port to 32-bit platforms
○ Small address space
○ Relies on atomic 64-bit load/store

● Heavily relies on TLS
○ Slow TLS on some platforms

● Does not instrument:
○ pre-built libraries
○ inline assembly

MemorySanitizer
uninitialized memory reads (UMR)

MSan report example: UMR

int main(int argc, char **argv) {
 int x[10];
 x[0] = 1;
 if (x[argc]) return 1;
 ...
% clang -fsanitize=memory -fPIE -pie a.c -g
% ./a.out
WARNING: MemorySanitizer: UMR (uninitialized-memory-read)

 #0 0x7ff6b05d9ca7 in main stack_umr.c:4
 ORIGIN: stack allocation: x@main

Shadow memory

● Bit to bit shadow mapping
○ 1 means 'poisoned' (uninitialized)

● Uninitialized memory:
○ Returned by malloc
○ Local stack objects (poisoned at function entry)

● Shadow is propagated through arithmetic
operations and memory writes

● Shadow is unpoisoned when constants are
stored

Direct 1:1 shadow mapping

Application
0x7fffffffffff
0x600000000000

Protected
0x5fffffffffff
0x400000000000

Shadow
0x3fffffffffff
0x200000000000

Protected
0x1fffffffffff
0x000000000000

Shadow = Addr - 0x400000000000;

Shadow propagation

● Reporting UMR on first read causes false positives
○ E.g. copying struct {char x; int y;}

● Report UMR only on some uses (branch, syscall, etc)
○ That's what Valgrind does

● Propagate shadow values through expressions
○ A = B + C: A' = B' | C'
○ A = B & C: A' = (B' & C') | (~B & C') | (B' & ~C)
○ Approximation to minimize false positives/negatives
○ Similar to Valgrind

● Function parameter/retval: shadow is stored in TLS
○ Valgrind shadows registers/stack instead

Tracking origins

● Where was the poisoned memory allocated?
a = malloc() ...
b = malloc() ...
c = *a + *b ...
if (c) ... // UMR. Is 'a' guilty or 'b'?

● Valgrind --track-origins: propagate the origin of
the poisoned memory alongside the shadow

● MemorySanitizer: secondary shadow
○ Origin-ID is 4 bytes, 1:1 mapping
○ 2x additional slowdown

Secondary shadow (origin)

Application
0x7fffffffffff
0x600000000000

Origin
0x5fffffffffff
0x400000000000

Shadow
0x3fffffffffff
0x200000000000

Protected
0x1fffffffffff
0x000000000000

Origin = Addr - 0x200000000000;

● Without origins:
○ CPU: 3x
○ RAM: 2x

● With origins:
○ CPU: 6x
○ RAM: 3x + malloc stack traces

MSan overhead

Tricky part :(

● Missing any write instruction causes false reports
● Must monitor ALL stores in the program

○ libc, libstdc++, syscalls, etc

Solutions:
● Instrumented libc++, wrappers for libc

○ Works for many "console" apps, e.g. LLVM
● Instrument libraries at run-time

○ DynamoRIO-based prototype (SLOW)
● Instrument libraries statically (is it possible?)
● Compile everything, wrap syscalls

○ Will help AddressSanitizer/ThreadSanitizer too

MSan trophies

● Proprietary console app, 1.3 MLOC in C++
○ Not tested with Valgrind previously
○ 20+ unique bugs in < 2 hours
○ Valgrind finds the same bugs in 24+ hours
○ MSan gives better reports for stack memory

● 1 Bug in LLVM
○ LLVM bootstraps, ready to set regular runs

● A few bugs in Chrome (just started)
○ Have to use DynamoRIO module (MSanDR)
○ 7x faster than Valgrind

● AddressSanitizer (memory corruption)
○ A "must use" for everyone (C++)
○ Supported on Linux, OSX, CrOS, Android,
○ WIP: iOS, Windows, *BSD (?)

● ThreadSanitizer (races)
○ A "must use" if you have threads (C++, Go)
○ Only x86_64 Linux

● MemorySanitizer (uses of uninitialized data)
○ WIP, usable for "console" apps (C++)
○ Only x86_64 Linux

Summary (all 3 tools)

Q&A

http://code.google.com/p/address-sanitizer/

http://code.google.com/p/thread-sanitizer/

http://code.google.com/p/memory-sanitizer/

http://code.google.com/p/address-sanitizer/
http://code.google.com/p/address-sanitizer/
http://code.google.com/p/thread-sanitizer/
http://code.google.com/p/thread-sanitizer/
http://code.google.com/p/memory-sanitizer/
http://code.google.com/p/memory-sanitizer/

ASan/MSan vs Valgrind (Memcheck)

Valgrind ASan MSan

Heap out-of-bounds YES YES NO

Stack out-of-bounds NO YES NO

Global out-of-bounds NO YES NO

Use-after-free YES YES NO

Use-after-return NO Sometimes NO

Uninitialized reads YES NO YES

CPU Overhead 10x-300x 1.5x-3x 3x

● Slowdowns will add up
○ Bad for interactive or network apps

● Memory overheads will multiply
○ ASan redzone vs TSan/MSan large shadow

● Not trivial to implement

Why not a single tool?

