

Software and Services Group Optimization Notice

Towards OpenMP Support in LLVM

Alexey Bataev, Andrey Bokhanko, James Cownie

Intel

1
* Other brands and names are the property of their respective owners.

Software and Services Group Optimization Notice

Agenda

• What is the OpenMP* language?

• Who Can Benefit from the OpenMP language?

• OpenMP Language Support

– Early / Late Outlining

– History

– OpenMP Runtime

• OpenMP support in Clang*

2
* Other brands and names are the property of their respective owners.

Software and Services Group Optimization Notice

What is the OpenMP Language?

• Industry-wide standard for shared memory
multiprocessing programming

• Vendor-neutral, platform-neutral, portable,
managed by an independent consortium

• Supports C, C++ and Fortran

– Implemented in GCC*, ICC, Open64*, Visual C++*, …

– But not in Clang / LLVM*!

• Current version is 3.1

– 4.0 under development

• www.openmp.org

3

#pragma omp parallel for

for (i = 0; i < N; i++)

{

 ...

}

* Other brands and names are the property of their respective owners.

Software and Services Group Optimization Notice

Who Can Benefit from the OpenMP
Language?

• Anyone who uses a multi-core processor

– Your phone almost certainly has more than 1 core!

• “Must have” for HPC

– Without OpenMP support, LLVM is at a disadvantage
in this area

• Becomes a “must have”
for “power clients”

– You can hardly find
a desktop / notebook with
a single core

4

U
SE

D

NOT USED

* Other brands and names are the property of their respective owners.

Software and Services Group Optimization Notice

OpenMP Support

5

C / C++ Front-End
(clang)

Back-End
(llvm)

*.cpp
with

OpenMP

OpenMP RTL

a.out

Compile-time Run-time

• Three essential parts:

– Front-end

– Back-End

– Library

• Two approaches:

– Early / late outlining

* Other brands and names are the property of their respective owners.

Software and Services Group Optimization Notice

Early / Late Outlining

• Parallel regions are put into separate routines

– To be executed in separate threads

– This can be done either in front-end or back-end

6

float a,x,y,z;

#pragma omp parallel for

for (i = 0; i < N; i++) {

 a[i] = x * y * z;

 ... // rest of loop

}

omp_parallel_for(0, N,

N/omp_get_num_threads(), forb)

...

void forb(int L, int U, R *r) {

 for (i = L; i < U; i++) {

 r->a[i] = r->x * r->y * r->z;

 ... // rest of loop

 }

}

* Other brands and names are the property of their respective owners.

Software and Services Group Optimization Notice

OpenMP in LLVM: A Brief History

• 2H 2012: Several proposals with late outlining

– From Intel, Hal Finkel, others

– All of them involve changes to LLVM IR and thus,
require modifications of LLVM phases

– None of them got enough support in the community

• October 2012: OpenMP in Clang project

– Started by AMD*, continued by Intel

– Early outlining

– OpenMP RTL calls generated in Clang

– No changes to LLVM IR

7
* Other brands and names are the property of their respective owners.

Software and Services Group Optimization Notice

OpenMP Support

8

C / C++ Front-End
(clang)

Back-End
(llvm)

*.cpp
with

OpenMP

OpenMP RTL

a.out

Compile-time Run-time

• Three essential parts:

– Front-end

– Back-End

– Library

• Two approaches:

– Early / late outlining

* Other brands and names are the property of their respective owners.

Software and Services Group Optimization Notice

OpenMP Runtime

• Fortunately, there is libgomp

– Unfortunately, it is under GPLv3*

– “Copyleft” license

• Clang / LLVM uses UoI / NCSA OSL*

– Permissive (aka BSD-style) free software license

• Permissively licensed free runtime library is
needed

9
* Other brands and names are the property of their respective owners.

Software and Services Group Optimization Notice

Intel® OpenMP Runtime

• Intel® OpenMP runtime was released in April
with LLVM compatible 3-clause BSD license

• This is Intel’s production runtime used by icc
and ifort

• Continual development/tuning since before the
OpenMP language existed (>15 years)

• Highly scalable (used on Intel® Xeon Phi™
coprocessor with 244 threads, large SGI* and
Bull* ccNUMA SMP machines)

10
* Other brands and names are the property of their respective owners.

Software and Services Group Optimization Notice

Intel® OpenMP Runtime

• Supports OpenMP 3.1 (and parts of OpenMP 4.0
[work in progress])

• ABI compatible with

– Intel Compilers (icc, icpc, ifort)

– GCC

• so gcc compiled code can be linked in without libgomp to
avoid issues if there are multiple OpenMP runtimes in the
same process

• Doxygen* documentation in the source

• Available from www.openmprtl.org

11
* Other brands and names are the property of their respective owners.

Software and Services Group Optimization Notice

OpenMP Support

12

C / C++ Front-End
(clang)

Back-End
(llvm)

*.cpp
with

OpenMP

OpenMP RTL

a.out

Compile-time Run-time

• Three essential parts:

– Front-end

– Back-End

– Library

• Two approaches:

– Early / late outlining

* Other brands and names are the property of their respective owners.

Software and Services Group Optimization Notice

OpenMP Support in Clang

• First approach is to represent OpenMP directives
as C++11 attributes (Olaf Krzikalla, Nov. 2012)

– Currently may require two parsing passes

– May need to change code generation for standard
statements

• Second approach is to use standard pragma
parsing harness

– Declarative directive is represented as a special kind of
declaration

– Executable directives and clauses are represented as a
special kind of statements

13
* Other brands and names are the property of their respective owners.

Software and Services Group Optimization Notice

Representation in AST
Declarative Directives

14

OMPThreadPrivateDecl

Variable

…

Variable

* Other brands and names are the property of their respective owners.

Software and Services Group Optimization Notice

Representation in AST
Executable Directives

15

OMPExecutableDirective

OMPClause

…

OMPClause

CapturedStmt

OMPExecutableDirective

OMPParallelDirective

OMPForDirective

…

* Other brands and names are the property of their respective owners.

Software and Services Group Optimization Notice

Representation in AST
Clauses

16

OMPClause

OMPIfClause

OMPPrivateClause

…

OMPIfClause Expr

OMPPrivateClause

Variable

…

Variable

Software and Services Group Optimization Notice

Representation in AST
Statements And Variables

17

• Statements are Structured Statements with
protected regions

– A single statement for #pragma omp parallel

– One or more for-loops for #pragma omp for

• Statements are represented as CapturedStmt to
capture local variables

– Special processing for threadprivate variables

– Private variables are constructed by default

– Shared variables are captured by reference

– Special processing for firstprivate, lastprivate,
reduction variables

Software and Services Group Optimization Notice

An Example

18

#pragma omp parallel if(a) private(argc,b)
foo();

-OMPParallelDirective <line:9:2, col:43>
 | |-OMPIfClause <col:22, col:27>
 | | `-ImplicitCastExpr <col:25> '_Bool' <IntegralToBoolean>
 | | `-ImplicitCastExpr <col:25> 'int' <LValueToRValue>
 | | `-DeclRefExpr <col:25> 'int' lvalue Var 'a' 'int'
 | |-OMPPrivateClause <col:28, col:43>
 | | |-DeclRefExpr <col:36> 'int' lvalue ParmVar 'argc' 'int'
 | | `-DeclRefExpr <col:41> 'int' lvalue Var 'b' 'int'
 | `-CapturedStmt <line:10:2, col:7>
 | `-CallExpr <col:2, col:7> 'void'
 | `-ImplicitCastExpr <col:2> 'void (*)(void)' <FunctionToPointerDecay>
 | `-DeclRefExpr <col:2> 'void (void)' lvalue Function 'foo' 'void (void)'

* Other brands and names are the property of their respective owners.

Software and Services Group Optimization Notice

Code Generation

• All variables are combined into an auto-
generated record according to their data-
sharing attributes (predetermined, explicit or
implicit)

• OpenMP regions are outlined as functions with
a single argument – pointer to the record

• LLVM IR code is generated to use captured
variables instead of original ones

19
* Other brands and names are the property of their respective owners.

Software and Services Group Optimization Notice

Current Status and Plans

• Implemented and committed:

– -fopenmp option

– #pragma omp threadprivate

– Parsing and semantic analysis , AST representation

• Implemented, under code review:

– All pragmas (parallel, for, sections, task etc.)

– Parsing and semantic analysis, data-sharing
attributes analysis, AST representation

• Under development

– CodeGen for all OpenMP constructs

20
* Other brands and names are the property of their respective owners.

Software and Services Group Optimization Notice

Acknowledgements

• Thank you to all code reviewers!

– Especially to Dmitri Gribenko, Hal Finkel and Doug
Gregor

• Your contribution is welcomed!

21
* Other brands and names are the property of their respective owners.

Software and Services Group Optimization Notice

Legal Disclaimer & Optimization Notice

22

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO
ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND
INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR
WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT,
COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.
Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software,
operations and functions. Any change to any of those factors may cause the results to vary. You should consult other
information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of
that product when combined with other products.

Copyright © , Intel Corporation. All rights reserved. Intel, the Intel logo, Xeon, Xeon Phi, Core, VTune, and Cilk are trademarks
of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that
are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and
other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended
for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for
Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information
regarding the specific instruction sets covered by this notice.

Notice revision #20110804

* Other brands and names are the property of their respective owners.

Software and Services Group Optimization Notice

23

