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Goal:
Characterization of Inherent Application Properties to Understand Performance

Inherent Application Properties
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ARM 1-4 cores 1 thread/core 3-wide superscalar L1 64KB 4-way Cycle 4
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Architectures

Memory Trace

Microarchitectural Features

 How well does an application match a platform?
° Diagnose performance bottlenecks Reuse Distance = # of distinct intervening memory accesses
* Performance behavior upon platform upgrade?

Why LLVM?

Optimizations/ x86, PowerPC, Theoretical DAG analysis Static source code analysis
MIPS instruction trace Transformations ARM
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Analysis

LLVM IR

Inherent computation — Load and multiplication

Results 1: Results 2:
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Issue Cycle

The Berkeley dwarf classification [K. Asanovic, 2009] is intended to categorize computational motifs according to their communication and 92% of the memory accesses have a reuse
computation patterns. There are 13 dwarfs, e.g., Dwarf 1:Dense Linear Algebra (DLA) distance < 27— If cache size = 1MB. 92% of

the memory accesses hit into the cache
Block size =64  Triple Loop

' Dwarfs:
Disk radii proportional to number of

memory references per instruction : Dense Linear Algebra
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Dwarf 1

Disk radii proportional to number of Dwarf 2 Refe rences

data exchanges between basic blocks Dwarf 3
Dwarf 4 Limits of Instruction-Level Parallelism

Dwarf 5 David P. Wall. ASPLOS, 1991
Dwarf 6

‘ Dwarf 7 Predicting whole-program locality through reuse distance analysis

Dwarf 8 C. Ding and Y. Zhong. PLDI, 2003.
Dwarf 9
Dwarf 11 Parallelism and Data Movement Chracterization of Contemporary Application Classes

Dwarf 13 Victoria Caparros and Phillip Stanley-Marbell. SPAA, 2011
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