ETH
Using the LLVM Interpreter to e s
- - - - omputer 5cience
Quantify Inherent Application Properties
Victoria Caparros (CS, ETH), Phillip Stanley-Marbell (Apple), and Markus Ptischel (CS, ETH) www._spiral.net

Goal:
Characterization of Inherent Application Properties to Understand Performance

Inherent Application Properties

Data/Task-Level Thread-Level Instruction-Level Data Locality

Parallelism Parallelism Parallelism
Application Source Code Input Data Set Analysis of Instruction-Level Parallelism (ILP)

Cycle 1
IBM Power7 8 cores 4 threads/core 12-wide superscalar L1 32KB 8-way yele

L2 256KB 8-way
Shared L3 32\MIB

Run-time Data-Flow Analysis of Data
Dependences and Memory Reuse Distance

in the LLVM Interpreter (lli) Cycle 3
ARM 1-4 cores 1 thread/core 3-wide superscalar L1 64KB 4-way Cycle 4

CortexA9 L2 SMB Parallelism Reuse Distance
Distribution Distribution

Intel Core i7 2 threadS/COI'e 4-wide Supersca|ar L1 32KB 8'Way Analysis of Data Locality - Memory Reuse Distance

L2 256KB 8-way Analysis of Analysis of
Shared L3 8MB Parallelism Data Locality

(Results 1) (Results 2) Reuse AIB A C C B

Distance: oo oo 1 oo 0 2 2 1

Cycle 2

W (# of nodes)

Avg. ILP =
Ve D(critical path length)

Architectures

Memory Trace

Microarchitectural Features

 How well does an application match a platform?
° Diagnose performance bottlenecks Reuse Distance = # of distinct intervening memory accesses
* Performance behavior upon platform upgrade?

Why LLVM?

Optimizations/ x86, PowerPC, Theoretical DAG analysis Static source code analysis
MIPS instruction trace Transformations ARM

1w $5,8($30)
1w $6,32($30)
mult $5,$6

mflo S5

1w $6,4(S$30)
addu $5,$5,$6
addu $6,50,S$5 Static Program LLVM IR Analytical models Hardware pormance counters

sll $5,$6,0x30 :
1w $6:402$30) IR instruction trace Analysis Interpreter

addu $5,$5,5$6 %arrayidxl6 = getelementptr inbounds double* %b, i64 1 pCo 1+ Ckﬁ/L < w 14 L
l.d $S£2,0(S$5) 216 = load double* %arrayidxl6, align _ 5 Q/D o QL W/D
mul.d $£0,$£0,$£f2 smul = fmul double %0, %16 Dynamic Program

Analysis

LLVM IR

Inherent computation — Load and multiplication

Results 1: Results 2:
Analysis of Parallelism Analysis of Data Locality

Distribution over execution cycles vs. average value

10°

of occurences

First access to each
element

100 I y 20 40
Reuse Distance, d (# of distinct intervening memory accesses)

Issue Cycle

The Berkeley dwarf classification [K. Asanovic, 2009] is intended to categorize computational motifs according to their communication and 92% of the memory accesses have a reuse
computation patterns. There are 13 dwarfs, e.g., Dwarf 1:Dense Linear Algebra (DLA) distance < 27— If cache size = 1MB. 92% of

the memory accesses hit into the cache
Block size =64 Triple Loop

' Dwarfs:
Disk radii proportional to number of

memory references per instruction : Dense Linear Algebra

: Sparse Linear Algebra
: Spectral Methods

: N-Body Methods

: Structured Grids

: Unstructured Grids

: MapReduce

: Combinational Logic Blocking increases the
: Graph Traversal

. . fraction of hits for
10: Dynamic Programming

11: Backtrack Branch+Bound ol | smaller cache sizes
12: Graphical Models 22 93 94 95 96 57 98 99 510 51l 512 513 514 515 516
13: Finite State Machine Reuse Distance, d (# of distinct intervening memory accesses)

Block size = 32

Block size = 16

coNOYUT B~ WDN B

Pr (Reuse Distance <d)

o}

Thread-Level Parallelism

|
10
Instruction-Level Parallelism
Dwarf 1

Disk radii proportional to number of Dwarf 2 Refe rences

data exchanges between basic blocks Dwarf 3
Dwarf 4 Limits of Instruction-Level Parallelism

Dwarf 5 David P. Wall. ASPLOS, 1991
Dwarf 6

‘ Dwarf 7 Predicting whole-program locality through reuse distance analysis

Dwarf 8 C. Ding and Y. Zhong. PLDI, 2003.
Dwarf 9
Dwarf 11 Parallelism and Data Movement Chracterization of Contemporary Application Classes

Dwarf 13 Victoria Caparros and Phillip Stanley-Marbell. SPAA, 2011

Thread-Level Parallelism

10 , :
The Landscape of Parallel Computing Research: A View from Berkeley
Instruction-Level Parallelism K. Asanovic et al. Communications of the ACM, 2009

