
Mini-Tutorial:
How to implement an LLVM

Assembler

Simon Cook

2013 European LLVM Conference, Paris

This presentation

 Inspired by previous tutorials.

 Covering some of the details easily tripped up on.

 Using the OpenRISC 1000 backend as an example where
needed.

 More detailed version of this available in Embecosm
Application Note 10: LLVM Integrated Assembler

– http://www.embecosm.com/appnotes/ean10/ean10-
howto-llvmas-1.0.pdf

 Source used as demonstration in GitHub:

– https://github.com/simonpcook/llvm-or1k

http://www.embecosm.com/appnotes/ean10/ean10-howto-llvmas-1.0.pdf
https://github.com/simonpcook/llvm-or1k

Motivation for MC Based Assembler

 General (Simplified) Compiler Workflow.

– clang –target=foo -c bar.c

– Front End converts C to IR

– Back End lowers IR to foo’s instruction set

– Carefully format .s file

– Assembler parses .s, generates object

 Key Idea: More efficient to directly generate the object file
within the compiler.

 Additionally: We already defined our instruction set, why
define it again?

4 Steps to Assembler Success

1. Parsing Instructions

2. Encoding Instructions

3. Decoding Instructions

4. Generating Object File (in our case ELF)

But First… FooInstrInfo.td

 Instruction definitions need to link printable instruction
to encoding.

– field bits<n> Inst;

– Inst field used with TableGen to get you 95% of the way by
building instruction encoding/decoding tables.

 Set bits for instruction opcodes/etc. and fields filled in by
backend.

Reduced or1k Example

class InstOR1K<dag outs, dag ins, string asmstr, list<dag> pattern> :
Instruction { field bits<32> Inst; bits<2> optype;
bits<4> opcode;
let Inst{31-30} = optype; let Inst{29-26} = opcode;

}

class InstRR<bits<4> op, dag outs, dag ins, string asmstr, list<dag>
pattern>
: InstOR1K<outs, ins, asmstr, pattern> {
let optype = 0b11;
let opcode = op;

}
class ALU_RR<bits<4> subOp, string asmstr, list<dag> pattern>
: InstRR<0x8, (outs GPR:$rD), (ins GPR:$rA, GPR:$rB),

!strconcat(asmstr, "\t$rD, $rA, $rB"), pattern> {
bits<5> rD; bits<5> rA; bits<5> rB;
let Inst{25-21} = rD; let Inst{20-16} = rA; let Inst{15-11} = rB;
let Inst{9-8} = op2; let Inst{3-0} = op3;

def ADD : ALU1_RR<0x0, "l.add", add>;

4 Steps to Assembler Success

1. Parsing Instructions

2. Encoding Instructions

3. Decoding Instructions

4. Generating Object File (in our case ELF)

Assembly Parsing

 Turns instruction strings into MC representations.

 Need to implement two classes:

– FooOperand – stores operand information and type

 e.g. “register”, “2”

– FooAsmParser – uses TableGen information to check
validity, but need to write functions for parsing operands
and creating FooOperands.

 validOpType ? createOpType : return 0;

 In ParseInstruction: If your instruction mnemonics are of
the form l.add, the string needs parsing to form [l, .add].

4 Steps to Assembler Success

1. Parsing Instructions

2. Encoding Instructions

3. Decoding Instructions

4. Generating Object File (in our case ELF)

Instruction Encoding

 To encode instructions, the class FooMCCodeEmitter needs
implementing providing the following functionality:

– Target operand encodings

 getMachineOpValue for registers and immediates with no
fixups.

– Byte emitting (for current endianness)

 Emit in EncodeInstruction after calling TableGen
getBinaryCodeForInstr.

– Custom register function (in some cases)

Encoding Custom Operands

 Custom operands need encoding manually.

 Specify EncoderMethod in operand definition.

 Encoding is done within l.s.n bits, regardless of final dest.

unsigned OR1KMCCodeEmitter::

getMemoryOpValue(const MCInst &MI, unsigned Op) const {

unsigned encoding;

const MCOperand op1 = MI.getOperand(1);

assert(op1.isReg() && "First operand is not register.");

encoding = (getOR1KRegisterNumbering(op1.getReg()) << 16);

MCOperand op2 = MI.getOperand(2);

assert(op2.isImm() && "Second operand is not immediate.");

encoding |= (static_cast<short>(op2.getImm()) & 0xffff);

return encoding;

}

4 Steps to Assembler Success

1. Parsing Instructions

2. Encoding Instructions

3. Decoding Instructions

4. Generating Object File (in our case ELF)

Instruction Decoding

 Whilst not needed to assemble, generally also useful.

 To decode, implement fooDisassembler, centered around
getInstruction.

– General flow of function:

1. Read N bytes of memory.

2. Call generated decodefooInstructionn.

3. Return instruction.

– In the case of variable length instructions, the approach is
to loop the above, e.g. try 16-bit insns, then 32-bit.

 Operands are added with instructions addOperand
function.

Decoding Tables with TableGen

 For disassembling to succeed, each possible encoding
must map to only one instruction.

 Otherwise, build fails:

 Conflicts can be solved by providing context as to when to
use each instruction.

– Simplest (when useful) is to declare instructions as
isPsuedo = 1 or isCodeGen = 1.

Decoding Conflict:

010001..........................

................................

JR 010001__________________________

RET 010001__________________________

4 Steps to Assembler Success

1. Parsing Instructions

2. Encoding Instructions

3. Decoding Instructions

4. Generating Object File (in our case ELF)

Writing ELF Objects

 To write ELF objects, fooELFObjectWriter and
fooAsmBackend need implementing.

– AsmBackend responsible for applying fixups when
information is available via applyFixup, adjustFixupValue
and writeNopData.

– ElfObjectWriter responsible for fixup to reloc conversion

 Other support definitions

– Relocations in include/llvm/Support/ELF.h

– Fixups in fooFixupKinds.h.

 createObjectWriter/createFooMCStreamer instantiates
all of the above.

Done

 You should now be able to test your new assembler

 To test your assembler with clang

– clang -target or1k -integrated-as helloworld.c

Thank you

www.embecosm.com

