
OJIT: A Novel Secure Remote Execution Technology By Obfuscated
Just-In-Time Compilation

M. Hataba1*, A. El-Mahdy*, A. Shoukry*, E. Rohou**
*Parallel Computing Lab, E-JUST **INRIA,Rennes

 Current Approaches

 Conclusions

 Experimental Analysis

 Vision

The Security Problem In The Cloud

 Introduction

 Evaluation Metrics

•  The world of computing is now undergoing a major paradigm shift.
The unlimited potentials of a connected world have allowed a new
form of “remote execution” of programs, where processing of one’s
data is done on a physically out of reach computing premise. For
example we have cloud computing platforms bundled with thin
clients like smartphones.

•  Unfortunately, a new breed of cyber threats appeared such as side-
channel attacks and cartography. Relying solely on data encryption
is not enough, as the decryption software itself runs remotely on the
cloud, and therefore security can be compromised.

•  Our work introduces OJIT (Obfuscated Just-In-Time compilation
technique); a technique inspired by the “security by obscurity”
principles adopted in foist viruses and surreptitious malware design.

•  Target securing remote computation platforms such as those in cloud
computing.

System Operation

•  We selected a concrete set of metrics to evaluate and assess the
obfuscation strength of the system.

•  We collected information about the number of instructions before
and after every obfuscation step.

• We also deduce the cyclomatic number and the knot count to
measure the complexity in the Control Flow Graph.

•  We introduced a new obfuscation metric to measure how different
is every code version as compared to its predecessor during the
dynamic code-morphing/obfuscation phase.

• This is expressed in terms of a similarity percentage of the Longest
Common Subsequence between the two code versions.

•  Cloud Computing is now facing what the first banking systems faced:
trust issues, privacy concerns and reasonable security doubts.

•  Security by Obscurity has been around and misused for some time –
we hope to bring the right side.

•  By utilizing the dynamic nature of JITed compiler we only hope that we
added an insufferable burden on a reverse engineering or tampering
malicious insiders.

Figure 3: LCS between successive versions of the various functions of
the Bzip2 benchmark. "

Title Basic Idea Critique

“Twin	 Clouds	 “	
	 by	 	 Bugiel,	 et	 al	

•  The	 Trusted	 Private	
Cloud	 :	 for	 evalua;ng	
encrypted	 security	 cri;cal	
data.	

•  Commodity	 public	
cloud	 :for	 compu;ng	
;me	 cri;cal	 queries	 in	
parallel	 under	 encryp;on	
in	 the	 query	 phase.	

•  Increased the cost of
infrastructure.

•  Hardware cost for
encrypted execution
“garbled circuit”.

•  More communication
cost among the
clouds.

“Hypervisor Security “
by	 McCune,	 et	 al	

•  RTM	 “Root	 Trust	
Management”.	

•  Chain	 of	 trust.	
•  CA	 “Cer;ficate	

Authority”.	

•  Costly start overhead.
•  Side-channels attacks.
•  Certificate authority

as a central point of
failure.

•  Sabotage attacks via
buffer and memory
overflow.

“Secure	 Virtual	
Architecture”	

	 by	 Criswell,	 et	 al	

•  Add	 instruc;ons	 for	
memory	 safety,	 type	
safety	 and	 control	 flow	
integrity.	

•  Monitor	 all	 privileged	
opera;ons.	

•  Control	 physical	
resources.	 	 	 	

•  Eavesdropping types
of attack.

•  Focus only on the
instruction set beyond
the code-generation
phases- not utilizing
LLVM’s JIT
compiler.

•  The dilemma here is how to trust a
computing environment that one
cannot control.

•  We have to invent new security
measures to trust that execution will be
private and the outcomes are integral.

•  Depending solely on cryptography is
not sufficient because the decryption
itself will be done on untrusted
platforms.

Our Approach: Security By Obscurity

•  Hiding the purpose, meaning, and operation of the code from
attackers either humans or reverse engineering software.

•  Gaming security by obscurity utilizing the information imbalance
between the end-user and the service provider.

•  Compilers offer a vast amount of semantic information which can

be utilized for security objectives.

•  Fortification and logical complexity together with the dynamic
nature of the JIT compiler covers a wide range of attack vectors .

•  Continually changing “What” , “When” and perhaps “Where it’s
done too”.

•  Our focus is on the execution phase against side-channel attacks;

we are not currently concerned with securing the JIT compiler
itself.

•  Side-Channel attacks are one of the major threats in the cloud
environment.

•  The idea behind them is to analyze usage patterns and/or their timing to
get information about code behavior.

•  Utilize this information to reverse engineer or tamper with the code.

•  This attack could be launched by a malicious insider or even a third
party impersonator.

•  We are currently focusing on JITed code obfuscation.

•  Code morphing – i.e multi-versioning of the same code with
same functionality

•  Dynamic switching - Jump around between these ever changing
versions

• 
•  We modified the Execution Engine of LLVM forcing it to lazily

call the JIT compiler every time a function is invoked.

•  Every case of recursion is treated as a new function call.

•  OJIT mainly works on a function call passes (Trampoline Call)
as a trigger for recompiling a piece of code.

•  Every function call results in a random order set of
transformation passes applied to it.

•  We can also extract loops as recursive function calls.

•  Thereby we made the entire program as a series of function
calls

• 
•  A strong random number generator forces unexpected code

version “O(NK) ”, N is the no. of transformation, size of pass set.

We tested our system on a recursion intensive program that is
the Bzip2 benchmark available in the SPEC CPU 2006 suite.

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

100	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	 16	 17	 18	 19	 20	 21	 22	 23	 24	

Si
m
ila
rit
y	
Pe

rc
en

t	

Transforma2on	 Number	

F1	

F2	

F3	

F4	

F5	

F6	

F7	

F8	

F9	

F10	

F11	

F12	

Figure 1: Cloud Computing Architecture"

Figure 2: Flow Chart of OJIT System Operation."

1| mohamed.hataba@ejust.edu.eg

