Noise: User-Defined Optimization Strategies

Ralf Karrenberg, Marcel Koster, Roland Lei3a, Yevgeniya Kovalenko, Sebastian Hack

www.cdl.uni-saarland.de/projects/noise

Setting

Automatic optimization strategies (e.g. "-O3") often do not produce the
code that the programmer desires. This can be due to:

e [00 Imprecise static analysis results

e (Cost function deficiencies

e Detrimental optimization effects

e Suboptimal optimization order ("phase ordering problem")

Therefore, programmers often try to outsmart the compiler by manually
"optimizing" the code. However, this has a number of disadvantages:

e [ime cost

e Error proneness

e lllegible/unmaintainable code

e Does not scale with #target architectures

This Is especially important for legacy code in the High-Performance
Computing (HPC) environment, but is also relevant in other performance-
sensitive fields such as computer graphics.

Noise
e Language extension for Clang

e Create user-defined optimization strategies for code segments
e Fine-grained control over applied optimizations
e Conveniently tune code without actually rewriting it

e Other parts of the program are optimized as before

Source File

I Pt Pt Pt Pt P~
P~ P~ P~

— Y PRSP P PRI PTG e —

[
0

|
StItegy B R > LlVM

I ||

II ~~~~~~~ II

I I

11— X v end

~~~~~~~~~~

Strategy C | ——pt 777777~ |

1
~~~~~~~~~

float g(float x) { return x + 42.f; }

volid testNoiseWFV (float x, floatx 1n, floatx out) {
NOISE ("loopfusion 1nline(g) vectorize(8) unroll (4)™)

{
for (int 1=0; 1<32; ++1i) {
float lic = x * g(x);
out[1] = 1in[1] + 1lic;
}
for (int 1=0; 1<32; ++1i) {
out [1] *»= X;

Transformations

The current implementation allows to employ all transformations available
in LLVM under the LLVM-internal names (e.g. dead code elimination [dce]
and loop invariant code motion [/icm]). Additionally, we implemented the
following special-purpose transformations:

Function Inlining

Force inlining of specific function calls without relying on the compiler’s
heuristics. This possibly allows additional optimization opportunities after-
wards, e.g. transformations that would have to be inter-procedural before
now can be applied locally.

Explicit Loop Unrolling

We provide the possibility to both rely on LLVM'’s heuristics for unrolling
or to force it explicitly with unroll(N). It N is not supplied, the phase itself
decides whether and how the loop should be unrolled.

Loop Vectorization

In addition to the LLVM-internal phases bb-vectorize and loop-vectorize
we provide wifv-vectorize, a wrapper around lioWFV that can be used to
vectorize data-parallel loops.

Loop Fusion

Fuse multiple loops into a single one by merging their bodies. Annotated
loops are not required to directly succeed each other. This enables com-
plex combinations of loop fusion and code motion.

Specialized Loop Dispatching

Create specialized variants of the annotated loop and introduce a dynamic
dispatcher (case distinction on the specialized variable). Uncover further
optimization potential by exploiting knowledge about runtime values of a
variable.

Preliminary Results

We are currently evaluating Noise in an HPC environment:

e Performance-critical regions of molecular dynamics legacy code.
e First results confirm applicability, usability, and improved work-flow.
e Phase-ordering still a problem, but now transparent to programmer.

1.00E+08

8.00E+07

¥ Original Code

® Manual Unroll

6.00E+07
4.00E+07

2.00E+07 Noise Unroll

0.00E+00

CPU Cycles

Loop orders

Result (Pseudo Code)

volid testNoiseWFV (float x, floatx 1n, floatx out)
<8 x float>+x 1nv = (K8 x float>x)1in;
<8 x float>+ outv = (K8 x float>«)out;
float lic = x * (x + 42.1f);
outv[0] = SIMD mul (SIMD add(inv|[0O] lic),
outv/[l] = SIMD mul (SIMD add(inv/[1l lic)
outv[2] = SIMD mul (SIMD add (inv|[Z. lic)
outv[3] = SIMD mul (SIMD add (inv/[3] lic)

4

Acknowledgements

| VISUAL

UNIVERSITAT

SAARLANDES

| INSTITUTE

e (intel®> | COMPUTING H L R Is

/. % E_uan_cl.::dsministerium
.}ﬁ E C O U S S Ul:lrd liorusr(]:?]ung

