
Using LLVM in the

presence of timing

constraints

Dave Lacey

LLVM European Developers Meeting

30th April 2013

XMOS and LLVM

 XMOS uses LLVM to implement C + XC compilers:

LLVM IR

XC

C/C++

ASM

LLVM 3.0
XCore
Backend

llvm-gcc

XMOS
XC frontend

XMOS
binutils

Moving to
clang

Want to
upgrade to

3.3+ C with extensions for
concurrency, real-time I/O,

memory safety

Real-time WCET constraints

 Code for our devices is hard real-time

port p, q;

time_t t1, t2;

…

wait_for_edge_and_timestamp(p, &t1);

…

while (!cond) {

 …

 output_signal_and_timestamp(q, &t2);

 timing_assert((t2 – t1) < 270);

 …

 wait_for_edge_and_timestamp(p, &t1);

}

If the time between
these points is less
that 270ns then
the program does
not work

 We have an analysis tool to check these constraints (XTA)

What’s the problem?

 LLVM has many optimizations

 In general, these optimization aim to improve average

execution time not worst case execution time

 In general, these optimization aim to make the whole

function (or perhaps loop within the function) faster - no

prioritization between execution paths

 Optimizations can make things much worse (from a

WCET perspective)

Example: Scheduling

 Scheduling can mess things up:

port p, q;

time_t t1, t2;

…

wait_for_edge_and_timestamp(p, &t1);

…

while (!cond) {

 [code sequence 1]

 output_signal_and_timestamp(q, &t2);

 timing_assert((t2 – t1) < 270);

 [code sequence 2]

 [code sequence 3]

 wait_for_edge_and_timestamp(p, &t1);

}

Constraints are met.

The program works!

Example: Scheduling

 Scheduling can mess things up:

port p, q;

time_t t1, t2;

…

wait_for_edge_and_timestamp(p, &t1);

…

while (!cond) {

 [code sequence 1]

 [code sequence 2]

 output_signal_and_timestamp(q, &t2);

 timing_assert((t2 – t1) < 270);

 [code sequence 3]

 wait_for_edge_and_timestamp(p, &t1);

}

Takes too long.

Broken!

Example: Invariant hoisting

 Loop invariant hoisting can mess things up:

port p, q;

time_t t1, t2;

…

wait_for_edge_and_timestamp(p, &t1);

…

while (!cond) {

 [code sequence 1]

 output_signal_and_timestamp(q, &t2);

 timing_assert((t2 – t1) < 270);

 [code sequence 2]

 [code sequence 3]

 wait_for_edge_and_timestamp(p, &t1);

}

Constraints are met.

The program works!

Example: Invariant hoisting

 Loop invariant hoiscan mess things up:

port p, q;

time_t t1, t2;

…

wait_for_edge_and_timestamp(p, &t1);

…

[code sequence 2]

while (!cond) {

 [code sequence 1]

 output_signal_and_timestamp(q, &t2);

 timing_assert((t2 – t1) < 270);

 [code sequence 3]

 wait_for_edge_and_timestamp(p, &t1);

}

Takes too long.

Broken!

What are we going to do?

 What are we going to do….

 Um…

Some hopes

 Most optimizations are OK

 We can sort most of this out in the scheduler

 … but that requires a scheduler that isn’t just a basic

block scheduler

 Need to avoid a big fork. Most platforms/code do not

care about this as much so cannot rewrite LLVM to be

“worst case constraint aware” everywhere.

 Limiting optimizations that cause problems is hopefully a

matter of tuning rather than rewriting

