
Efficient audio signal processing using LLVM and Haskell

Efficient audio signal processing
using LLVM and Haskell

Henning Thielemann

2013-04-30



Efficient audio signal processing using LLVM and Haskell

Haskell and Signal Processing

Thinking in terms of signal flow diagrams
means thinking functional.

oscillator

exponential

amplifier

amplify

(exponential halfLife amp)

(oscillator Wave.saw phasephasephase freq)



Efficient audio signal processing using LLVM and Haskell

Haskell and LLVM

Haskell

strong type system

purely functional

lazy = stream processing

efficiency is not primary

LLVM

produces efficient code, especially vector instructions

weak type system

Just-In-Time compilation

transparent usage in Haskell
adaption to available vector instructions



Efficient audio signal processing using LLVM and Haskell

Embedded Domain Specific Language

amplify

(exponential halfLife amp)

(oscillator Wave.saw phasephasephase freq)

Direct interpretation:

exponential and oscillator create infinite (lazy) lists of
sample values

amplify multiplies two lists element-wise

EDSL interpretation:

exponential and oscillator provide LLVM IR code for
generating values successively

amplify appends the code provided by exponential and
oscillator and multiplies their generated values



Efficient audio signal processing using LLVM and Haskell

Embedded Domain Specific Language – Problems

Needed to solve more problems:

sharing (→ causal arrows)

feedback (→ causal arrows)

cumbersome usage of arrows (→ functional interface)

passing parameters to LLVM code (complicated by bug 8281)

vector computing

expensive computation of frequency filter parameters
(→ opaque types)

http://llvm.org/bugs/show_bug.cgi?id=8281


Efficient audio signal processing using LLVM and Haskell

Types of Vectorisation needed for Signal Processing

Given: Vectors of size 2n

ideal speedup:
2n scalar instructions → 1 vector instruction

often speedup:
2n scalar instructions → c · n vector instructions

That is:

Vectorisation not always optimization

But: Assembling and disassembling vectors and
conversion between different vector schemes also expensive

Auto-vectorisation still possible?



Efficient audio signal processing using LLVM and Haskell

Example: Cumulative Sum (cumsum)

Goal:

v0 v2

[a, b, c , d ] → [a, a + b, a + b + c , a + b + c + d ]

Vectorisation:

v0 >> 1
+ v0

= v1

[ a, b, c ]
+[ a, b, c , d ]

= [ a, a + b, b + c , c + d ]

v1 >> 2
+ v1

= v2

[ a, a + b ]
+[ a, a + b, b + c , c + d ]

= [ a, a + b, a + b + c , a + b + c + d ]

4 vector instructions instead of 3 scalar instructions



Efficient audio signal processing using LLVM and Haskell

Where to do vectorisation in LLVM?

Different approaches:

Program with vectors in Haskell,
expand cumsum in Haskell (my current approach)

Program with vectors in Haskell,
expand cumsum in a custom LLVM pass (I’d prefer that)

Program with scalars in Haskell,
standard LLVM vectoriser detects cumsum

(seems to be favorite of some LLVM developers)



Efficient audio signal processing using LLVM and Haskell

Optimizations and JIT

JIT compiles to host machine by default

Optimizer does not optimize to host machine by default
Result: crashs

I was told, I must set target data. Why?
And how, using the C interface?


