
2013 LLVM Developers' Meeting 
1 

LLDB for your hardware:  

Remote Debugging the Hexagon DSP 

 

Colin Riley – Games Technology Director 



2013 LLVM Developers' Meeting 
2 

Outline 

● Introductions 

● Adapting LLDB for your hardware 

● The Why and How? 

● The 3 steps 

● Summary 

● Q&A 

2 



2013 LLVM Developers' Meeting 
3 

Introductions 

3 



2013 LLVM Developers' Meeting 
4 

Introductions - Me 

● Hello! 

● I’m Colin Riley 

● Games Technology Director at Codeplay 
 

● Games? Isn’t this the LLDB talk? 

● Background in Games Technology 

– Lately been interested in working with debuggers 

– worked with LLDB last 18 months on customer projects 

– Wrote a specialised PlayStation®3 debugger (non LLDB) 

4 



2013 LLVM Developers' Meeting 
5 

Introductions - Codeplay 

● Heterogeneous compiler experts 

● 35 talented engineers 

● Based out of Edinburgh, Scotland 

● We work on 

● R&D (both self and externally funded) 

● Work for hire, games fire fighting, compiler tech 

● Standards via bodies such as Khronos & HSA 

Edinburgh Castle 

5 



2013 LLVM Developers' Meeting 
6 

Introductions – The Hexagon Connection 

● We are creating an LLDB-based debugger for Hexagon 

● Hexagon an incredible DSP 

● Information available on Qualcomm developer portal 

● “Porting LLVM to a Next Generation DSP”  

– LLVM DevMtg 2011, Taylor Simpson of Qualcomm Innovation 
Center, Inc 

 

6 



2013 LLVM Developers' Meeting 
7 

Introductions – The Hexagon Connection 

● We are creating an LLDB-based debugger for Hexagon 

● Development still ongoing 

● Remote debugger 

● Linux and Windows LLDB hosts 

● Eclipse Integration 
 

● Talk is about adapting LLDB 

● using hexagon only as example 

7 



2013 LLVM Developers' Meeting 
8 

Adapting LLDB for your hardware 

8 



2013 LLVM Developers' Meeting 
9 

Why? 

9 



2013 LLVM Developers' Meeting 
10 

Adapting LLDB for your hardware – Why? 

● Debuggers essential part of any SDK 

● Fast, advanced debuggers are demanded 

● LLDB is the perfect balance of  

● Performance 

● Clean architecture, extendable 

● Leverages much from LLVM 

● Lots of other reasons 

10 



2013 LLVM Developers' Meeting 
11 

How? 

11 



2013 LLVM Developers' Meeting 
12 

Adapting LLDB for your hardware - How 

● The three steps to debugger implementation 

1. Binary and debugging information parsing 

2. Target system state and control 

3. Interpretation of the two previous steps 

– Advanced features require using both sets of data 

– Extensive work here, the difference between a debugger and 
a useful debugging experience 

12 



2013 LLVM Developers' Meeting 
13 

Step 0 
(Before we begin) 

LLVM/Clang support for your target 

 

13 



2013 LLVM Developers' Meeting 
14 

Step 0 – LLVM/Clang support for target 

● Can hack around this in some ways... 

● But disassembler is a must – LLDB uses it 

● Hexagon disasm is in development by Qualcomm 
Innovation Center, Inc - will be upstreamed 

● For expression evaluation, need the frontend 
enabled for whatever language you are debugging 

14 



2013 LLVM Developers' Meeting 
15 

Step 0 – LLVM/Clang support for target 

● Another reason why teams should be staying near 
tip of LLVM/Clang 

● Some work may be needed at an API level to 
integrate older versions of LLVM with LLDB 

● Could result in some nasty issues too 

● Hexagon tracks tip, so we are onto a winner 

15 



2013 LLVM Developers' Meeting 
16 

Step 1 

Binary and debug information parsing 

 

16 



2013 LLVM Developers' Meeting 
17 

Step 1: Binary and debug information parsing 

● What do we need to load? 

● The binary sections/symbols/debug information 

● LLDB already supports ELF & Mach-O out of the box 

● In terms of debugging information, DWARF supported 

– Features being added all the time 

● My experience simply with ELF & DWARF 

17 



2013 LLVM Developers' Meeting 
18 

Step 1: Binary and debug information parsing 

● However, if you are not using a supported format: 

● ObjectFile 

● If you need to add your object file format, need to 
extend this interface 

– Can refer to ObjectFileELF 

● For debuginfo, look at SymbolFileDWARF  

 

 

18 



2013 LLVM Developers' Meeting 
19 

Step 1: Binary and debug information parsing 

● Hexagon is ELF & DWARF 

● Job done? 

● We still need to ensure the architecture lines up 

● Allows LLDB to understand the binary is for Hexagon 

● Uses LLVM target information 

19 



2013 LLVM Developers' Meeting 
20 

Step 1: Binary and debug information parsing 

● ELF Architecture definitions 

● Very simple changes 

● Really only 3-4 lines in ArchSpec.cpp 
--- a/source/Core/ArchSpec.cpp 

+++ b/source/Core/ArchSpec.cpp 

@@ -104,6 +104,11 @@ static const CoreDefinition g_core_definitions[ArchSpec::kNumCores] =     { 

eByteOrderLittle, 8, 1, 15, llvm::Triple::x86_64 , ArchSpec::eCore_x86_64_x86_64  , "x86_64"    }, 

+    { eByteOrderLittle, 4, 4, 4, llvm::Triple::hexagon , ArchSpec::eCore_hexagon_generic,    "hexagon"   }, 

+    { eByteOrderLittle, 4, 4, 4, llvm::Triple::hexagon , ArchSpec::eCore_hexagon_hexagonv4,  "hexagonv4" }, 

.... 

+    { ArchSpec::eCore_hexagon_generic , llvm::ELF::EM_HEXAGON, LLDB_INVALID_CPUTYPE, 0xFFFFFFFFu, 

0xFFFFFFFFu }  // HEXAGON 

● g_core_definitions, g_elf_arch_entries, 
cores_match(),  Thread::GetUnwinder() 

20 



2013 LLVM Developers' Meeting 
21 

Step 1: Binary and debug information parsing 

● Is that it? 

● We can test 

● Create a target with a binary from it 
(lldb) target create hello_sample 

Current executable set to 'hello_sample' (hexagon). 

(lldb) 

21 



2013 LLVM Developers' Meeting 
22 

Step 1: Binary and debug information parsing 

● Inspect the image sections 

(lldb) image dump sections 

 

Sections for 'hello_sample' (hexagon): 

  SectID     Type             File Address                             File Off.  File Size  Flags      Section Name 

  ---------- ---------------- ---------------------------------------  ---------- ---------- ---------- ---------------------------- 

... 

  0x00000005 code             [0x0000000000005000-0x000000000000b070)  0x00005000 0x00006070 0x00000006 hello_sample..text 

... 

  0x0000000b data             [0x000000000000e018-0x000000000000e6c8)  0x0000d018 0x000006b0 0x00000003 hello_sample..data 

  0x0000000c zero-fill        [0x000000000000e700-0x000000000000f240)  0x0000d6c8 0x00000000 0x00000003 hello_sample..bss 

  0x0000000d dwarf-info                                                0x0000e110 0x00000091 0x00000000 hello_sample..debug_info 

  0x0000000e dwarf-abbrev                                              0x0000e1a1 0x0000005d 0x00000000 hello_sample..debug_abbrev 

  0x0000000f dwarf-line                                                0x0000e1fe 0x00000045 0x00000000 hello_sample..debug_line 

  0x00000010 dwarf-frame                                               0x0000e244 0x00000040 0x00000000 hello_sample..debug_frame 

  0x00000011 dwarf-str                                                 0x0000e284 0x0000007a 0x00000030 hello_sample..debug_str 

... 

  0x00000013 elf-symbol-table                                          0x0000e6c4 0x000023f0 0x00000000 hello_sample..symtab 

... 

(lldb) 

22 



2013 LLVM Developers' Meeting 
23 

Step 1: Binary and debug information parsing 

● Inspect the image source line maps 

(lldb) image dump line-table hello.c 

Line table for /home/user/code/hexagon/hexagon-tools/tests/hello.c in `hello_sample 

0x000050c0: /home/user/code/hexagon/hexagon-tools/tests/hello.c:4 

0x000050c4: /home/user/code/hexagon/hexagon-tools/tests/hello.c:5 

0x000050d0: /home/user/code/hexagon/hexagon-tools/tests/hello.c:6 

0x000050d8: /home/user/code/hexagon/hexagon-tools/tests/hello.c:9 

0x000050dc: /home/user/code/hexagon/hexagon-tools/tests/hello.c:10 

0x000050e8: /home/user/code/hexagon/hexagon-tools/tests/hello.c:11 

0x000050f0: /home/user/code/hexagon/hexagon-tools/tests/hello.c:12 

0x000050f4: /home/user/code/hexagon/hexagon-tools/tests/hello.c:15 

0x0000510c: /home/user/code/hexagon/hexagon-tools/tests/hello.c:16 

0x0000511c: /home/user/code/hexagon/hexagon-tools/tests/hello.c:17 

0x00005128: /home/user/code/hexagon/hexagon-tools/tests/hello.c:18 

0x0000513c: /home/user/code/hexagon/hexagon-tools/tests/hello.c:19 

0x00005150: /home/user/code/hexagon/hexagon-tools/tests/hello.c:20 

0x0000516c: /home/user/code/hexagon/hexagon-tools/tests/hello.c:21 

0x00005184: /home/user/code/hexagon/hexagon-tools/tests/hello.c:21 

 

(lldb) 

23 



2013 LLVM Developers' Meeting 
24 

Step 1: Binary and debug information parsing 

● Try setting some breakpoints 

(lldb) b hello.c:20 

Breakpoint 1: where = hello_sample`main + 92 at hello.c:20, address = 0x00005150 

 

(lldb) b main 

Breakpoint 2: where = hello_sample`main + 24 at hello.c:16, address = 0x0000510c 

● Can see these match up with line table and symbols 

● ? 

● Or does it? 

0x00005150: /home/user/code/hexagon/hexagon-tools/tests/hello.c:20 

 

[  428]    445   X Code      0x00000000000050f4      0x0000000000000090 0x00000012 main 

24 



2013 LLVM Developers' Meeting 
25 

Step 1: Binary and debug information parsing 

● Try setting some breakpoints 
(lldb) b main 

Breakpoint 1: where = hello_sample`main + 24 at hello.c:16, address = 0x0000510c 

● Can see these match up with line table and symbols 
[  428]    445   X Code      0x00000000000050f4      0x0000000000000090 0x00000012 main 

 

(the breakpoint in main is the function prologue end, hence address difference) 

 

 

Address            Line   Column File   ISA Flags 

------------------ ------ ------ ------ --- ------------- 

0x00000000000050c0      4      0      1   0  is_stmt 

0x00000000000050c4      5      0      1   0  is_stmt prologue_end 

.. 

0x00000000000050f4     15      0      1   0  is_stmt 

0x000000000000510c     16      0      1   0  is_stmt prologue_end 

0x000000000000511c     17      0      1   0  is_stmt 

.. 

0x0000000000005184     21      0      1   0  is_stmt end_sequence 

25 



2013 LLVM Developers' Meeting 
26 

Step 1: Binary and debug information parsing 

● ‘Tests’ pass 

● Enough information to progress 

● Other hardware may have additional sections you 
may want to give LLDB knowledge about 

● Can add as when required 

 

26 



2013 LLVM Developers' Meeting 
27 

Step 1 

Binary and debug information parsing 

 

Done! 

 

27 



2013 LLVM Developers' Meeting 
28 

Step 2 

Control and state of target system 

28 



2013 LLVM Developers' Meeting 
29 

Step 2: Control and State of target system 

● Two routes for this, local and remote 

29 



2013 LLVM Developers' Meeting 
30 

Step 2: Control and State of target system 

● Local Debugging 

● OS X, Linux and FreeBSD support for this in trunk 

● This is the ‘normal’ debugger architecture 

● We don’t want to run the full debugger on the DSP, or 
other embedded style systems.  

● Will not be looking at local debugging in this talk 

 

30 



2013 LLVM Developers' Meeting 
31 

Step 2: Control and State of target system 

● Remote Debugging 

● Usually over TCP, serial, TCP over USB 

● For Hexagon, remote is ideal 

● LLDB has built-in support for GDBs Remote Serial 
Protocol (RSP) 

 

● gdb/gdbserver style, for those familiar with that 

31 



2013 LLVM Developers' Meeting 
32 

Step 2: Control and State of target system 

● Remote Serial Protocol – Crash Course 

● Simply client/server ASCII communication 

● Packet-based 

32 



2013 LLVM Developers' Meeting 
33 

Step 2: Control and State of target system 

● Remote Serial Protocol – Crash Course 

CLIENT SENDS -> $Hc0   //Set Thread 

CLIENT SENDS -> $Z1,<address>,4  //Set a hardware breakpoint 

SERVER SENDS -> $OK 

CLIENT SENDS -> $c   //Continue execution 

SERVER SENDS -> $T<thread status>  //Thread status report 

SERVER SENDS -> $S05   //Signal: Trap 

CLIENT SENDS -> $m<address>,<size>  //Read memory 

SERVER SENDS -> $<data> 

CLIENT SENDS -> $g   //Get register values 

SERVER SENDS -> $<data> 

CLIENT SENDS -> $c   //Continue execution 

SERVER SENDS -> $T<thread status>  //Thread status report 

SERVER SENDS -> $S0b   //Signal: Segfault 

 

● Set breakpoint, hit breakpoint, read memory, 
continue and stop with a segfault 

33 



2013 LLVM Developers' Meeting 
34 

Step 2: Control and State of target system 

● Remote Debugging 

● Stub runs on the target, communicates to LLDB via 
RSP over whichever medium is available 

● Read/Write memory 

● Read/Write registers 

● Thread states 

● Breakpoint setting/unset 

34 



2013 LLVM Developers' Meeting 
35 

Step 2: Control and State of target system 

● Remote Debugging 

● Important point – the stub can be dumb, and should 
be for embedded 

– Why do something that isn’t needed? 

● It doesn’t have debug info for the running program 

● It is simply target control and state inspection 

35 



2013 LLVM Developers' Meeting 
36 

Step 2: Control and State of target system 

● Remote Debugging options with LLDB 

● LLDB has gdb-remote support 

● There are three server options for the target 
 

1. Debugserver 

2. lldb-platform 

3. 3rd party RSP server 

36 



2013 LLVM Developers' Meeting 
37 

Step 2: Control and State of target system 

● Remote Debugging options with LLDB 

 

Developer machine 
running LLDB 

TCP/SERIAL/USB 

TARGET DEVICE 
   (choose one of…) 

debugserver 

lldb-platform 

3rd party RSP server 

37 



2013 LLVM Developers' Meeting 
38 

Step 2: Control and State of target system 

● Debugserver 

● LLDB feature page states OS X debugging only 

● A manual process, run debugserver with debugee 
executable as argument 

● Could be ported 

– Not ideal 

– However, focus not on debugserver any more... 

38 



2013 LLVM Developers' Meeting 
39 

Step 2: Control and State of target system 

● lldb-platform 

● Designed as a daemon, services remote actions 

● Should be able to list processes, attach, transfer files, 
start debugging sessions 

● Development gaining momentum 

– But it is still very early in development, needs work 

● If you were to port anything, port this 

– You will be happy you did in the longer term 

39 



2013 LLVM Developers' Meeting 
40 

Step 2: Control and State of target system 

● lldb-platform 

● And if you were to port... 

● It’s just one source file lldb-platform.cpp in tools/lldb-
platform 

● Uses GDBRemoteCommunicationServer.cpp 

● Would need to implement a Host interface  

– See lldbHostCommon 

– Host.cpp 

 

40 



2013 LLVM Developers' Meeting 
41 

Step 2: Control and State of target system 

● 3rd party RSP server 

● Your architecture may already have a remote debug server 
integrated 

● This is the case for the Hexagon simulator 

● Want to leverage this as much as possible 

● Need to watch out for divergence from the ‘standard’ 
protocol 

– Extensions easy to seep into system 

– Will need to ensure LLDBs GDBRemote system is updated 

41 



2013 LLVM Developers' Meeting 
42 

Step 2: Control and State of target system 

● LLDBs RSP support 

● Has been extended adding features 

● Traditionally version mismatches between 
gdbserver/gdb has been very nasty 

● New extensions trying to aid this 

● Extensions are documented pretty well 

– http://llvm.org/svn/llvm-project/lldb/trunk/docs/lldb-gdb-
remote.txt 

 

42 



2013 LLVM Developers' Meeting 
43 

Step 2: Control and State of target system 

● LLDBs RSP support 

● You need to define the target register set if packet 
extensions not supported 

– Previously this has been hard coded 

● Can be done via a python script 

 

 

– Example script available (x86_64_target_definition.py) 

 

(lldb) settings set plugin.process.gdb-remote.target-definition-file       

       hexagon_target_definition.py 

(lldb) gdb-remote test:1234 

43 



2013 LLVM Developers' Meeting 
44 

Step 2: Control and State of target system 

● LLDBs RSP support 

● Would be nice to have a plugin system to extend 
supported packets 

– From a client perspective, as to aid with 3rd party servers 

● At the moment you need to add to a large switch 
statement 

● Ideally, have a default fallthrough path to a series of 
handler plugins 

44 



2013 LLVM Developers' Meeting 
45 

Step 2: Control and State of target system 

● LLDBs RSP support – packet extensions 

● We will probably look into this with Hexagon 

● Will aid debugger developers, especially if some RSP 
packets are optional/internal only 

– Easily able to separate handlers out for upstream/internalonly 

● Will keep the ‘base’ RSP implementation in LLDB clean 

45 



2013 LLVM Developers' Meeting 
46 

Step 2: Control and State of target system 

● Where are we? 

● Step 2 

● Control and state of the target system 

● We can see the status of the target, read/write 
memory 

● Is that enough? 

46 



2013 LLVM Developers' Meeting 
47 

Step 2: Control and State of target system 

● It could be! 

● But we want a useful debugger. 

● Can we pull files from the target? 

● This is incredibly useful 

● Also need to tie up the remote-debugging aspects 
to the architectures we support too 

● We add this with the Platform plugin 

47 



2013 LLVM Developers' Meeting 
48 

Step 2: Control and State of target system 

● Platform Plugin 

● Methods for performing actions on the platform 
we’re adding 

● What architectures are supported? 

● How to launch and attach to processes – if supported. 

● Downloading and uploading files 

● See PlatformRemoteGDBServer.cpp for example 

 

48 



2013 LLVM Developers' Meeting 
49 

Step 2: Control and State of target system 

● Process Plugin 

● Directs the various parts we need to do in debugging 
a process to the GDBRemote system 

● Resuming processes, writing memory, etc 

● Does the waiting for responses from the remote 
server 

● ProcessGDBRemote.cpp should be enough already for 
general debugging requirements 

 

 

49 



2013 LLVM Developers' Meeting 
50 

Step 2: Control and State of target system 

● Remote debugging 

● Control the target system 

● Query its state 

 

 

 

50 



2013 LLVM Developers' Meeting 
51 

Step 2 

Control and State of target system 

 

Done! 

 

51 



2013 LLVM Developers' Meeting 
52 

Step 2.9: What can we do 

● At this point 

● Breakpoints 

● Can view memory and registers 

● Source debugging! 

● Other features that could work: 

– Step over single step 

– Some variables can be viewed 

 

52 



2013 LLVM Developers' Meeting 
53 

Step 2.9: What can we do 

● Uhh, I’m trying to debug within a dynamic library 

● Lots of things left to implement to make a good 
debugger, let alone great! 

53 



2013 LLVM Developers' Meeting 
54 

Step 3 

Interpretation of debuginfo and target state 
(more often known as the hard part) 

54 



2013 LLVM Developers' Meeting 
55 

Step 3: Interpretation of debuginfo and state 

● Dynamic Loaders/Linkers 

● The debugger needs to track shared libraries 

● Whatever OS/dyld you use, should have an API 
debuggers use to inspect state 

● LLDB uses an additional RSP packet in this case: 

– qShlibInfoAddr 

– Traverses known structures to work out shared libraries 

– Then can pull files, parse for debug info and debug 

– Uses the work from step one 

55 



2013 LLVM Developers' Meeting 
56 

Step 3: Interpretation of debuginfo and state 

● Dynamic Loaders/Linkers 

● If your target does not have shared libraries and is 
completely static, you will probably not need this at 
all! 

● Can look at DynamicLoaderPOSIXDYLD.cpp 

● Uses Process->GetImageInfoAddress() 

● With a GDBRemote process, this sends the RSP 
packet to request this information 

56 



2013 LLVM Developers' Meeting 
57 

Step 3: Interpretation of debuginfo and state 

● Dynamic Loaders/Linkers 

● Hexagon supports dynamic linking 

● Will be adding this support later 

– Based on System V ABI data structures 

57 



2013 LLVM Developers' Meeting 
58 

Step 3: Interpretation of debuginfo and state 

● ABI 

● Argument passing 

● Function returns 

● Register status 

– Volatile, etc 

● Without a correct ABI plugin, the debugging 
experience won’t be great 

58 



2013 LLVM Developers' Meeting 
59 

Step 3: Interpretation of debuginfo and state 

● ABI 

● Have a look at ABIMacOSX_arm.cpp 

● Can use that as a base 

– Certainly for ARM targets! 

– Have tried using it on an arm target running Linux with 
minor changes, more than enough to start with 

 

● Implementing our own ABIHexagon classes 

● At a very early stage currently 

 
59 



2013 LLVM Developers' Meeting 
60 

Step 3: Interpretation of debuginfo and state 

● Call Stacks 

● If your debug information is of high quality, and 
includes call frame information (CFI), great 

● If the ABI always has a frame pointer, great 

● Without the CFI to generate frame addresses of 
previous frames, arguments/registers may be 
incorrect 

● Unwinding… 

60 



2013 LLVM Developers' Meeting 
61 

Step 3: Interpretation of debuginfo and state 

● The Unwinder 

● Stack Unwinding occurs via a Plan list 

● Plans used throughout LLDB 

● General idea 

– Finds frame pointer if it’s always defined 

– Utilize the CFI in the debugging information 

– If all else fails, it will try to generate CFI by emulation, if an 
emulator is available 

● The emulator isn’t just for unwinding 

 

 61 



2013 LLVM Developers' Meeting 
62 

Step 3: Interpretation of debuginfo and state 

● InstructionEmulator 

● Emulation is required within the debugger to… 

– Generate CFI debug information if it does not exist 

● Look where registers are saved, etc 

– Calculate branch target addresses for single steps 

● Hexagon has hardware single step support, so this of less 
important in this case 

 

● Does not need to be a full emulator 

– Only the instructions which are used for the above actions 

62 



2013 LLVM Developers' Meeting 
63 

Step 3: Interpretation of debuginfo and state 

● InstructionEmulator 

● Whilst it does not need to be a full emulator 

– Still should be able to emulate to the point that if required, 
debugging optimized code is possible 

63 



2013 LLVM Developers' Meeting 
64 

Step 3: Interpretation of debuginfo and state 

● Unwinding, InstructionEmulation… 

● Could fill a whole other talk 

● Main point: interpretation of debug information in 
tandem with runtime state is where the advanced 
features of the debugger lie 

● Developers now expect these features 

● Need to devote lots of time to these areas 

64 



2013 LLVM Developers' Meeting 
65 

Step 3 

Interpretation of debuginfo and target state 

 

Not even close to being done 

65 



2013 LLVM Developers' Meeting 
66 

Conclusion 

● In summary 

● Three steps 

● Get the binary loading 

● Adapt/port whichever remote server you choose, 
making sure to add your platform methods 

● The real meat – DynamicLoader, Unwinder, Emulator 

● The last 10% takes 90% of the time… 

66 



2013 LLVM Developers' Meeting 
67 

Conclusion 

● In summary 

● LLDB fantastic, had good support for the most popular object 
format and remote debugging 

● Remote debugging needs work with new packets and 
extendibility – an RSP packet plugin system would be great 

● The advanced features developers crave mean implementing 
very complex systems to interpret the debuginfo with 
runtime state 

● Not even mentioned IDE integration yet... (another talk?) 

67 



2013 LLVM Developers' Meeting 
68 

Conclusion 

● In summary 

● Steps 1 & 2: Getting a bare bones debugger up and 
running is  fairly straightforward and can progress 
quite quickly, weeks to months of work 

 

● Step 3: Getting a good debugger up and running is 
another matter!  

 

 

 
68 



2013 LLVM Developers' Meeting 
69 

Thank you! 

 

I’m on twitter @domipheus 

Codeplay is on twitter @codeplaysoft 

 

Many thanks to Qualcomm Innovation Center, Inc for  

allowing use of Hexagon as an example 

69 



2013 LLVM Developers' Meeting 
70 

Q & A 
colin@codeplay.com 

I’m on twitter @domipheus 

Codeplay is on twitter @codeplaysoft 

70 



2013 LLVM Developers' Meeting 
71 

Q & A 
colin@codeplay.com 

I’m on twitter @domipheus 

Codeplay is on twitter @codeplaysoft 

71 


