
1

Developer Toolchain for

Paul T. Robinson
Sony Computer Entertainment
LLVM Dev Meeting, 7 Nov 2013

2

Agenda

PlayStation®4 – Info for game teams

Why Clang?

Special Considerations

Hacking on Clang/LLVM

Now and the Future

3

PlayStation®4

“Next Gen” PlayStation® console

Powerful game machine

Modern graphics features

PC based architecture

Lightning fast memory

New networking and

interface features

4

CPU

AMD x86-64 Jaguar

Low power consumption, low heat

8 cores, 8 HW threads

2MiB L2 cache per 4 core group

32KiB L1 I-cache and D-cache per core

Atomics, threads, fibers, ULTs (user-level threads)

5

GPU

DX 11.1+ feature set with SCE custom features
Fine-grained cache control

Performance counters

Extra debugging support

Asynchronous compute architecture
Carefully balanced for maximum graphics power plus compute tasks

800MHz clock, 1.843 TFLOPS

Greatly expanded shader pipeline compared to PS3™
Geometry and tessellation shaders

More direct exposure to shader stages than DirectX

6

RAM

8GB 256 bit GDDR5

GDDR5 is very high end graphics memory

only found on PC graphics cards

Fully unified address space

176 GB/s total bandwidth

7

Toolchain at a Glance

Windows 7 (and later), 64-bit

Tools are fully integrated into Visual Studio®
2010 , 2012, and later

Simple wizard-based project creation

CPU compiler, shader compiler, linker, debugger

SN-DBS (distributed build system)

CPU and GPU performance analyzers
Real time and static analysis

Various supporting binary utilities

8

CPU Compiler

Compiler – LLVM with the Clang front end

Highly conformant C and C++ front end

Great C++ 11 support

Excellent diagnostic messages

Fast compilation

Excellent code generation

Updates to newer versions will be regular

Driven by SCE and the open source community

Comprehensive set of intrinsics

9

CPU Compiler

Compatibility

Microsoft

Some attributes and pragmas have different syntax

GCC

Largely compatible by default

Many, but not all attributes are supported

PS3™ and PS Vita

Some compatibility due to GCC compatibility

Beware of relying on undefined behavior in other

compilers!

10

Linker

Fast, mature linker

Comparable to GNU gold

Fine-grained dead-stripping/de-duplication

Fragments based on symbol relocations

Operates on code and data

Does not need separate section per function/variable

LTO support “on the list”

Positive results from evaluation, see our lightning talk

11

Debugger

Debug your PS4™ code as you would your PC code

Mirrors the Visual Studio® multi-threaded debugging

feature set

Advanced feature support

Core dump debugging

Parallel call stacks and watches

Thread-specific break points and trace points

12

Agenda

PlayStation®4 – Info for game teams

Why Clang?

Special Considerations

Hacking on Clang/LLVM

Now and the Future

13

Why Switch to Clang?

SCE traditionally provided customized GCC-based

toolchains

SN Systems (Bristol UK) had a popular toolchain

Compiler (SNC) came from Apogee

EDG front end, proprietary optimizer/back end

Specifically designed for RISC (MIPS, PPC, ARM)

SCE bought SN; now we have two PS3™ toolchains

PS4™ is coming up; SNC can’t target x86…

14

Why Switch to Clang?

SCE Worldwide Studios working with LLVM since 2008

Four choices to evaluate (circa 2010):

Straight gcc

Hybrid llvm-gcc

EDG front end (from SNC) + LLVM

Clang/LLVM (2.8)

Technical evaluation not conclusive

15

Why Switch to Clang?

EDG had a couple strikes against it

Home-brew “glue” – EDG didn’t want it

ARM experience (LLVM DevMtg 2010) similar

Debug info problematic

Non-technical considerations mattered a lot

Clang not a clear winner, but on a trajectory

LLVM community considered more “nimble” than GCC

Clang+LLVM “joined at the hip” so less effort to stay current

Subsequent experience validated this decision

16

Agenda

PlayStation®4 – Info for game teams

Why Clang?

Special Considerations

Hacking on Clang/LLVM

Now and the Future

17

What We Provide

Toolchain, SDK, samples

Developer Services organization

Front-line support in multiple time zones

End-user documentation

Compiler Reference; Transition Guide; ABI Overview; Intrinsics

Reference

Testing

Conformance, regression, functional

18

Our Licensees

Many studios, with large development teams

SCE Worldwide Studios (“first party”)

Non-SCE (“third party”)

Massive real-time graphics-intensive 3D simulations

And they call them games…

Vectors (LOTS of vectors) and not just GPU stuff

Piles of shaders (GPU kernels)

Data build (assets) much bigger than code

19

How They Build

Optimization is always on (-O2 minimum)

Hard real-time frame rate deadlines are unforgiving

Assets (data) typically consume lots of memory

Using -O0/-O1, game will not work

Guess how well debugging goes

Unity builds (#include *.cpp)

Improve optimization/inlining

Reduce data and debug-info size

LTO might replace this

20

And it looks like this…

Short clip from inFAMOUS: Second Son

Sample game play shows CPU managing lots of

objects (sparks, debris etc)

Complete trailer:

http://www.youtube.com/watch?v=o-B40rzJHOY

Longer section of game play:

http://www.youtube.com/watch?v=Uibnf_Q_51s

http://www.youtube.com/watch?v=o-B40rzJHOY
http://www.youtube.com/watch?v=o-B40rzJHOY
http://www.youtube.com/watch?v=o-B40rzJHOY
http://www.youtube.com/watch?v=Uibnf_Q_51s

21

Agenda

PlayStation®4 – Info for game teams

Why Clang?

Special Considerations

Hacking on Clang/LLVM

Now and the Future

22

Distributed Compiler/RTL Teams

SCE Technology Platform

SN Systems (Bristol UK) – overall toolchain

U.S. R&D (San Mateo CA) – Clang/LLVM

SN Systems (Campbell CA) – SNC

SCEI (Tokyo) – RTL

SCE Worldwide Studios

Tools & Technology (everywhere)

23

Driver Changes

Changed various defaults, including:

-target and -mcpu (it’s a cross-compiler)

-std=gnu++11 (only one C++ dialect, so far)

-fno-exceptions -fno-rtti

-fPIC -fstack-protector-strong

-fno-omit-frame-pointer -momit-leaf-frame-pointer

Customized target

Header/lib search paths

Run our proprietary linker

24

Clang Changes

Pragmas for compatibility or custom features

Beefed up Windows hosting

Windows backslash separators

Non-ASCII characters in path/file names

Intrinsic function documentation (coming)

Derived from our user manual

Hack to reduce debug-info size

Suppress unused methods in classes

Not anything upstream would want, sorry

25

LLVM Changes

Added X86 instruction subsets

Mostly superseded by upstream implementations

We did contribute TBM

Backend tweaks

Relocation changes to enable spiffy dead-stripping

FastISel fiddling to get better debug-line info

26

Working with the LLVM Community

Initial development hampered by secrecy

Blanket secrecy policy included compiler project

No advice/feedback from the group consciousness

Sitting on features and bugs and fixes applicable upstream

Clear value to working openly with upstream

File a bug; somebody else might fix it

Send a patch; people will review/advise

Bigger features can get better design review

Putting private changes upstream reduces merge pain

27

Working with the LLVM Community

Policy evolved over time

Pre-announcement: Nothing that reveals target details

Post-announcement: Nothing that reveals still-secret details

Details relevant to compiler essentially all public

Workflow evolved to include sending fixes upstream

Sometimes doing that first!

Lots of backlog to work through

Upstream review often means revising our patches

Adds work now, but eliminates future merge pain

28

Night of the Living Merge

Merging once per upstream release was a nightmare

We stuck our fingers in everywhere

The 3.0 merge work took three months

Actively progressing toward “living on trunk”

Automation will catch merge issues immediately

Fix-upstream-first will cost less in the long run

Formal releases still based on upstream releases

Trading merge pain for branch pain… should be much less

29

Agenda

PlayStation®4 – Info for game teams

Why Clang?

Special Considerations

Hacking on Clang/LLVM

Now and the Future

30

Game Developers Love It!

Quotes from 3rd-party studios (not SCE):

“Clang for PS4™ is a huge improvement over GCC for

PS3™. The same codebase (more or less) on the same

hardware went from ~25 minutes to ~1.5 minutes.

Clang’s improved warning and error messages also

pointed us to some very questionable legacy stuff.”

--Steven Houchard, Gearbox

31

Game Developers Love It!

“Toolchain is really nice, link time is ~10 seconds,

versus 2-4 minutes on PC.”

--Sammy Fatnassi, Eidos Montreal

“The quality of diagnostics is also incredible! It’s

as pretentious as Google Search when it comes to

correcting typos for us and that’s a good thing.”

--Jean-François Marquis, Ubisoft

32

…except when debugging

Debugging optimized code is terribly painful

We meet studios’ low expectations

Alternate approach: Un-optimize just this function

Nearly every compiler allows function-level control

Except not Clang/LLVM

Most-requested feature by an order of magnitude

Need function-level IR attribute to control optimization

Must work with normal or LTO builds

“optnone” in place, need help to implement semantics

33

More for the Wish List

Hooks for developer support

Which optimization caused your problem?

Auto-bugpoint with MetaRenamer for bug reports

Various goodies

Static analyzer – pretty much works today

Profiling – going through some changes upstream

Sanitizers – needs runtime support

34

Q & A

