
New features in
AddressSanitizer
LLVM developer meeting

Nov 7, 2013
Alexey Samsonov, Kostya Serebryany

Agenda
● AddressSanitizer (ASan): a quick reminder

● New features:
○ Initialization-order-fiasco
○ Stack-use-after-scope
○ Stack-use-after-return
○ Leaks

● ASan for Linux Kernel

● Misc: compile time, MPX, ASM, libs

● BOF at 2:00pm today

ASan: a quick reminder
● Dynamic testing tool, finds memory bugs

○ Buffer overflows, use-after-free
○ Found 5000+ bugs everywhere, including LLVM

● Compiler instrumentation + run-time library

● ~2x slowdown

● In LLVM since 3.1

● Siblings:
○ ThreadSanitizer (TSan): data races
○ MemorySanitizer (MSan): uses of uninitialized memory

ASan: a quick reminder (cont.)
● Every 8 bytes of application memory are

associated with 1 byte of “shadow” memory

● Redzones are created around buffers;
freed memory is put into quarantine

● Shadow of redzones and freed memory is
“poisoned”

● On every memory access compiler-injected
code checks if shadow is poisoned

ASan report example: heap-use-after-free
int main(int argc, char **argv) {

 int *array = new int[100];

 delete [] array;

 return array[argc]; // BOOM
}

% clang++ -O1 -g -fsanitize=address a.cc && ./a.out

==30226== ERROR: AddressSanitizer heap-use-after-free

READ of size 4 at 0x7faa07fce084 thread T0

 #0 0x40433c in main a.cc:4

0x7faa07fce084 is located 4 bytes inside of 400-byte
region

freed by thread T0 here:

 #0 0x4058fd in operator delete[](void*) _asan_rtl_

 #1 0x404303 in main a.cc:3

previously allocated by thread T0 here:

 #0 0x405579 in operator new[](unsigned long) _asan_rtl_
 #1 0x4042f3 in main a.cc:2

New Features

ASan report example: init-order-fiasco

% clang -g -fsanitize=address i1.cc i2.cc
% ASAN_OPTIONS=check_initialization_order=1 ./a.out

==19504==ERROR: AddressSanitizer: initialization-order-fiasco
READ of size 4 at 0x000001aaff60 thread T0
 #0 0x414fa3 in __cxx_global_var_init i1.cc:2
 #1 0x415015 in global constructors keyed to a i1.cc:5

0x000001aaff60 is located 0 bytes inside
 of global variable 'B' from 'i2.cc' (0x1aaff60) of size 4

// i1.cc
extern int B;
int A = B;
int main() {
 return A;
}

// i2.cc
#include <stdlib.h>
int B = atoi("123");

Detecting init-order-fiasco
● Frontend knows which globals are dynamically

initialized

● Instrumented code registers globals
struct __asan_global {

 void *address;

 size_t size; <...>

 const char *module_name;

 bool has_dynamic_initializer;

}

// asan.module_ctor has the highest priority.

asan.module_ctor() { <...>

 __asan_register_globals(globals, n);

}

Detecting init-order-fiasco (cont.)

// All globals from the translation unit are

// initialized here.

_GLOBAL__I_a() {

// Poison shadow memory for {uninitialized, all}

// globals in another TUs.

__asan_before_dynamic_init(module_name);

__cxx_global_var_init1();

<...>

__cxx_global_var_initN();

// Unpoison shadow memory for all the globals.

__asan_after_dynamic_init();

}

// Poison shadow memory for {uninitialized [1], all [2]}

// globals in another TUs.

__asan_before_dynamic_init(module_name);

[1] ASAN_OPTIONS=check_initialization_order=true
[2] ASAN_OPTIONS=strict_init_order=true (has false positives).

struct Foo {

 Foo() { if (!initialized) value = get_value(); }

 int get() { if (!initialized) value = get_value();

 return value; }

 int value;

 static bool initialized;

};

Init-order fiasco detector modes

Init-order fiasco status
● Works on Linux.

● OFF by default :(May bark on globals with no-op
constructors, user has to blacklist them.

● Still worth using:
○ Strict mode ON by default for Google code,

hundreds of errors are fixed.
○ Good for large code bases, which are difficult to be

made -Wglobal-constructors-clean.
○ Finds potentials errors (LTO).

ASan report example: stack-use-after-scope
int main() {
 int *p;
 { int x = 0; p = &x; }
 return *p;
}
% clang -g -fsanitize=address,use-after-scope a.cc ; ./a.
out

==15839==ERROR: AddressSanitizer: stack-use-after-scope
READ of size 4 at 0x7fffe06c20a0 thread T0
 #0 0x46103d in main a.cc:4

Address is located in stack of thread T0 at offset 160 in
frame
 #0 0x460daf in main a.cc:1

 This frame has 4 object(s):
 [96, 104) 'p'
 [160, 164) 'x' <== Memory access at offset 160 is
inside this variable

Detecting stack-use-after-scope

Use llvm.lifetime intrinsics to generate calls to ASan
runtime:

llvm.lifetime.start(size, ptr) ->

__asan_unpoison_stack_memory(ptr, size)

llvm.lifetime.end(size, ptr) ->

__asan_poison_stack_memory(ptr, size)

Stack-use-after-scope status
● Still at a prototype stage.

● Clang doesn’t yet emit llvm.lifetime intrinsics for
temporaries:
const char *s = FunctionReturningStdString().c_str();

char c = s[0]; // BOOM.

● Need to optimize redundant calls to ASan runtime (static
analysis).

● Stack-use-after-scope will be bundled with stack-use-
after-return (discussed further).

% clang -g -fsanitize=address a.cc
% ASAN_OPTIONS=detect_stack_use_after_return=1 ./a.out

==19177==ERROR: AddressSanitizer: stack-use-after-return
READ of size 4 at 0x7f473d0000a0 thread T0
 #0 0x461ccf in main a.cc:8

Address is located in stack of thread T0 at offset 32 in frame
 #0 0x461a5f in LeakLocal() a.cc:2
 This frame has 1 object(s):
 [32, 36) 'local' <== Memory access at offset 32

ASan report example: stack-use-after-return
int *g;
void LeakLocal() {
 int local;
 g = &local;
}

int main() {
 LeakLocal();
 return *g;
}

Stack-use-after-return instrumentation
// Function entry

char frame[N];

char *fake_frame = &frame[0];

if (__asan_option_detect_stack_uar)

 fake_frame = asan_stack_malloc(N, frame);
…

// Function exit

if (fake_frame != frame)

 asan_stack_free(fake_frame, N);

Stack-use-after-return allocator
char *asan_stack_malloc(
 size_t N, char *real_frame);
void asan_stack_free(
 char *fake_frame, size_t N);

● Fast thread-local malloc-like allocator

● Has quarantine for freed chunks

● Uses a fixed size mmap-ed buffer

● If allocation fails, returns the original frame

ASan report example: memory leak
int *g = new int;
int main() {
 g = 0; // Lost the pointer.
}

% clang -g -fsanitize=address a.cc
% ASAN_OPTIONS=detect_leaks=1 ./a.out

==19894==ERROR: AddressSanitizer: detected memory leaks

Direct leak of 4 byte(s) in 1 object(s) allocated from:
 #0 0x44a3b1 in operator new(unsigned long)
 #1 0x414f66 in __cxx_global_var_init leak.cc:1

● Similar to other tools: tcmalloc, valgrind, etc

● Faster than any of those
○ No extra overhead on top of ASan at run-time
○ Small overhead at shutdown

● Based on the ASan/MSan/TSan allocator

● Can be bundled with ASan/MSan/TSan or
used as a standalone tool
○ Currently, supported only in ASan or standalone

● Requires StopTheWorld() -- today Linux only

LeakSanitizer (ASan’s leak detector)

● Full malloc/free API
○ thread-local caches, similar to tcmalloc

● Extra features for the tool:
○ Associate metadata with every heap chunk:

■ Stack trace of malloc/free
■ Other tool-specific metadata

○ ASan keeps metadata in the redzone
○ TSan/MSan: metadata is not adjacent to the chunk
○ Fast mapping “address => chunk => metadata”

ASan/TSan/MSan allocator

● Memory is allocated from a fixed addr. range
○ ASan: [0x600000000000, 0x640000000000) -- 4Tb

● 64 regions; each allocates its own size class
○ Chunks are allocated left to right. Metadata: right to left.

● Fast “address=>chunk=>metadata”
○ Simple arithmetic
○ Lock-free

ASan/TSan/MSan allocator (cont.)

16-byte Chunk1 16-byte Chunk2 ... MetaData2 MetaData1

SizeClass0

SizeClass1

...

SizeClass48

...

64Kb Chunk1 64Kb Chunk2 ... MetaData2 MetaData1

(invalid)

MISC

ASan for Linux Kernel
● … has nothing to do with LLVM :(

○ Our early prototype uses GCC’s TSan module
○ Instrumentation is a bit different
○ Run-time is different (inside the kernel)

● Found 12 bugs already, 5 fixed!

● Want to use Clang for better instrumentation
○ Clang issues are resolved (?)
○ Still some issues in the Kernel code

● Want to test another kernel? Talk to us!

Intel MPX
● Intel MPX: Memory Protection Extensions

○ Published on July’13, HW available in ~ 2 years
○ Additional instructions to find buffer overflows
○ Expensive instructions touch two cache lines
○ Requires lots of memory
○ Slow for programs with graphs, lists and trees.
○ Does not detect use-after-free
○ Has false positives
○ *Biased* comparison against ASan: goo.gl/RrhZIz

● Still worth supporting in LLVM!
○ Finds intra-object buffer overflows
○ Very fast for long loops that traverse simple arrays

http://goo.gl/RrhZIz

Compile time with ASan
● ASan and MSan create more control flow

● Some LLVM passes downstream explode

● Example: PR17409 (quadratic?)
○ llvm::SpillPlacement::addLinks
○ InlineSpiller::propagateSiblingValue

http://llvm.org/bugs/show_bug.cgi?id=17409

Why instrument all libs?

● ASan: stack unwinding with frame pointers
● TSan: catching synchronization via atomics
● MSan: avoid false positives
● All tools: more coverage

● Status: can build 50+ libs used by Chromium
on Linux

● Help is welcome!

We also want to instrument ASM!

● MSan: avoid false positives
○ Ex.: FD_ZERO on Linux is inline asm
○ Ex.: optimized libraries (openssl, libjpeg_turbo)

● All tools: more coverage (same as libs)

Ideas
● Pattern matching for simple cases
● An MC Pass
● Use MCLayer

Summary

● ASan keeps getting new features
○ Initialization-order-fiasco: done (Linux)
○ Stack-use-after-scope: work-in-progress
○ Stack-use-after-return: beta
○ Memory Leaks: done (Linux)

● Lots of work to do
○ Libs, ASM, Kernel, MPX, compile time
○ Better support for non-Linux-x86_64

