
clad - Automatic Differentiation with Clang
Violeta Ilieva and Vassil Vassilev

Princeton University and CERN

Automatic Differentiation

Differentiation is the process of finding a derivative, which mea-
sures how a function changes as its input changes. Derivatives
can be evaluated with machine precision accuracy through a
method called automatic differentiation. Unlike other
methods for differentiation, including numerical and symbolic,
automatic differentiation yields exact derivatives even of com-
plicated functions at relatively low processing and storage
costs.

Chain Rule

Automatic differentiation calculates derivatives by combining
the values of basic operations that have known derivatives,
which are reached by employing the chain rulemultiple times
on the input function. We chose to apply the chain rule in
the forward mode, which means that we propagate derivatives
of intermediate variables along with the control flow of the
original function. Here is a short example:

d(x + y · z)
dy

= d(x)
dy

+ d(y · z)
dy

= d(y)
dy

· z + y · d(z)
dy

= z

Source Code Transformation

We implemented automatic differentiation using source code
transformation, which consists of explicitly building a new
source code through a compiler-like process that includes pars-
ing the original program, constructing an internal representa-
tion and performing global analysis. It takes into account the
context of a particular computation, leading to identification of
global dependencies and flexibility in applying derivative rules.

Example

#include "Differentiator.h"

float func() { return 12.0; }
namespace custom_derivatives { float func() {return 42.0;} }
float foo() (int x, int y) { return std::sin(custom_derivatives::func())*x+y; }
int foo_derived_x();
int main() { diff(foo, 0).execute(); /*or fwd decl works too*/

foo_derived_x(int x, int y); return 0; }

What is clad?
clad is a C++ plugin for clang that implements auto-
matic differentiation of user-defined functions by em-
ploying the chain rule in forward mode, coupled with
source code transformation and AST constant fold.

Architecture

Given the sample C/C++ file Foo.cxx shown at the bottom
left corner, we can find the derivative of foo by invoking a clang
instance that has been extended with our plugin clad. There
are 3 possible outcomes and currently clad gives the middle
one. That is, the output is an object file that contains the
generated derivatives. We are almost done with implementing
the creation of a .cxx file and are working towards composing
a dynamic library comprised of the derivatives.

Foo.cxx

FooDerivatives.cxx

libFooDerivatives.so

Foo.oclang

li
b
C
la
d
.s
o

Usage

Once a user has defined a function in a C/C++ file, they can invoke its derivative right away in the source code, relying on
forward declaration. Before running the file however, they have to invoke clad in one of the two ways shown below. This results
in generating either plain derivatives, or folded derivatives, i.e. functions in which the constant computations have been optimized
away, improving readability. Sample command-line invocations and derivative source code is shown below.

Derivatives

$ clang -cc1 -x c++ -std=c++11 -load libAutoDiff.dylib
-plugin clad -plugin-arg-clad -fprint-derived-fn
-plugin-arg-clad -fprint-derived-fn-ast
/src/tools/autodiff/test/Foo.c

// input is sin(custom_derivatives::func()) * x + y

float foo_derived_x(int x, int y) {
return cos(custom_derivatives::func()) * 0 * x

+ sin(custom_derivatives::func()) * 1 + 0;
}

Folded Derivatives

$ clang -cc1 -x c++ -std=c++11 -load libAutoDiff.dylib
-plugin clad -plugin-arg-clad -fprint-folded-fn
-plugin-arg-clad -fprint-folded-fn-ast
/src/tools/autodiff/test/Foo.c

// input is sin(custom_derivatives::func()) * x + y
// note that we are not using func(), but custom_derivatives::func()

float foo_derived_x(int x, int y) {
return sin(custom_derivatives::func());

}

Features

Overload resolution.
clad is able to make a difference between the overloaded
functions below, resolve correctly the one that was spec-
ified to be derived, and carry out the operation, if the
function’s declaration appears in the custom namespace.

int overloaded(int x) {
printf("I was called!");
return x*x;

}
int overloaded(float x) {

return x;
}

Library of derivatives of essential functions.
For convenience, we provide a library of predefined derivatives,
that use either templates, like sin, or overloading, like cos,
shown to the right. It contains the declarations of all differen-
tiable functions and can be expanded by users. For example,
printf from above will not be differentiated recursively and the
derivative of the second overloaded function will be 3 instead
of 1.

namespace custom_derivatives {
template<typename R, typename A> R sin(A x) { return (R)::std::cos(x); }

float cos(float arg) { return -std::sin(arg); }
double cos(double arg) { return -std::sin(arg); }
long double cos(long double arg) { return -std::sin(arg); }
double cos(Integral arg) { return -std::sin(arg); }

int my_custom_derivative_x(float x) { return 3; }
}

Control flow management.
We are able to handle control flow issues by creating additional
variables to avoid ambiguity. For example, the following block

if (x < 0) rslt = rslt * x;
else rslt = x * x;
return rslt;

will yield the following derivative:
if (x < 0) {

rslt = rslt * x; rslt_derived_x = (rslt_derived_x * x + rslt * 1);
}
else {

rslt = x * x; rslt_derived_x = (1 * x + x * 1);
}
return rslt_derived_x;

Under the Hood

1 Collect diff invocations through clang’s RecursveASTVisitor.
diff(foo, 0).execute();

2 Parse their arguments.
• functions to derive - foo
• independent variables - x.

3 Create a new function that mirrors the input and whose
name signifies that it is a derivative with respect to a
specific independent variable.

int foo(int x, int y) {}
int foo_derived_x(int x, int y) {}

4 Visit the different components of the user function
definition, then clone and transform them through the
compiler according to the chain rule. Here is an overview of
how DeclRefExpr nodes are handled:

NodeContext DerivativeBuilder::VisitDeclRefExpr(DeclRefExpr* DRE) {
DeclRefExpr* cloneDRE = m_NodeCloner->Clone(DRE);
if (/* the variable was already declared */)

return /* the name of its derivative */ ;
if (/* this is an independent varible */) {

llvm::APInt one(m_Context.getIntWidth(m_Context.IntTy), 1);
IntegerLiteral* constant1 = IntegerLiteral::Create(m_Context, one,

m_Context.IntTy, SourceLocation());
return NodeContext(constant1);

}
/* this is a dependent variable, so create constant0 */
return NodeContext(constant0);

}

Future

clad will be embedded in the next release of the CERN ROOT
Framework. We will also expand the different types of AST
nodes that the tool can handle properly, extend the built-in
derivative library, expand the template support, and include
macros as well as functor objects. Further future work will
include making clad pluggable in any compiler and enabling it
to offload computations to the GPU by using OpenCL.

Acknowledgements

We would like to thank Lorenzo Moneta and Alexander Penev who pro-
vided valuable comments, ideas, and assistance. The presented work was
facilitated by Google Summer of Code 2013.

Contact Information

•Web: https://code.google.com/p/clang-auto-
differentiation-plugin

•Email: vilieva@princeton.edu, vvasilev@cern.ch
•Phone: +1.609.216.8913

