

Targeting HHVM’s JIT compiler to LLVM

Jason Evans
Software Engineer
April 8, 2014

HHVM Background
▪  2009: HPHPc deployed (PHPàC++àx64)

▪  2013: HHVM deployed

▪  v1: PHPàHHBCàx64

▪  v2: PHPàHHBCàHHIRànative (x64/aarch64)

▪  v3: PHPàHHBCàHHIRà???ànative

▪  Age-old question: Why not use LLVM?

HHVM fundamentals

▪  “Tracelet”-at-a-time JIT

▪  Observed types are burned in as preconditions

▪  Different input types à different tracelets

▪  Tracelet exits call JIT, smashed to call generated code

▪  Transition between JIT-generated code and interpreter at
any HHBC instruction boundary

Why not use LLVM?

▪  Then:

▪  Big bet on very fast JIT codegen

▪  Unladen Swallow was having a rough time

▪  Added project uncertainty

▪  LLVM didn’t solve the hard problems for us

▪  Now:

▪  Too slow at codegen?

▪  Integration headaches?

Current HHVM/LLVM challenges

▪  Calling convention modularity

▪  HHVM currently reserves CPU registers (VmFp, VmSp)

▪  Code smashing requires special alignment

▪  LLVM (MCJIT) does too much

▪  GDB integration hook conflict

▪  RTDyldMemoryManager lobotomy

▪  Disable eh_frame generation (already have master eh_frame)

▪  Don’t need run-time linking/loading

For more information

▪  http://hhvm.com

▪  https://github.com/facebook/hhvm

(c) 2009 Facebook, Inc. or its licensors. "Facebook" is a registered trademark of Facebook, Inc.. All rights reserved. 1.0

