
  

Fast JIT Code Generation

Tilmann Scheller



  

Overview

Introduction

tiny-llvm-codegen

SkyEye

Performance Numbers

Summary



  

Introduction

Traditional LLVM JIT has a relatively high overhead since it's 
essentially using the same code generator like the static 
compiler

Only useful for really hot code

Fast-isel solves part of the problem but overhead still significant

It would be nice to just flip a switch and get a different tradeoff 
in terms of compile time/runtime performance



  

tiny-llvm-codegen

Work is based on tiny-llvm-codegen

tiny-llvm-codegen is a really simple JIT for LLVM IR targeting 
x86-32

Developed by Mark Seaborn in March 2013

Ported tiny-llvm-codegen to x86-64

Added basic support for the AMD64 System V ABI



  

tiny-llvm-codegen

Extremely simple translator

Very small (about 2000 LOC)

No register allocation

No instruction selection

No instruction scheduling

Just translating every LLVM IR instruction one by one

All values go into memory



  

Example

foo:
push   %rbp
mov    %rsp,%rbp
sub    $0x1c,%rsp
mov    %rdi,-0x8(%rbp)
mov    %rsi,-0x10(%rbp)
mov    -0x10(%rbp),%rax
mov    -0x8(%rbp),%rcx
add    %rcx,%rax
mov    %rax,-0x18(%rbp)
mov    -0x18(%rbp),%rax
leaveq
retq

define i64 @foo(i64 %a, i64 %b) {
  %1 = add i64 %b, %a
  ret i64 %1
}



  

tiny-llvm-codegen

Supported: Integer operations

Missing: Floating-point operations, Vector operations

No performance tuning yet

Probably lots of low hanging fruit

Supports i1, i8, i16, i32, i64



  

SkyEye

Open Source full system simulator

Supports a wide range of different architectures: ARM, 
PowerPC, MIPS, x86, SPARC, ColdFire, Blackfin

Does interpretation as well as dynamic binary translation with 
LLVM (using a fork of the libcpu project)

Can run an ARM Android 2.2 build



  

SkyEye Overview

ARM

Interpreter

Translate to LLVM IR

Optimize LLVM IR

LLVM JITtiny-llvm-codegen

x86-64 x86-64



  

Test workload

Simulating a Samsung S3C6410X SoC with an ARM11 core

Booting an ARMv6 Linux 3.0 kernel

This requires about 150 million instructions

Produces 33MB of optimized bitcode



  

Test workload

Compiling the 33MB of bitcode offline:

3.3 seconds with tiny-llvm-codegen

67 seconds with llc

JITing every basic block which is executed at least twice to 
compare the performance of both JITs

Booting the kernel on the simulated system: about 3x faster 
when using tiny-llvm-codegen (24 sec vs. 76 sec)

Measured on an Intel Core i7-4770K



  

Summary

Ported tiny-llvm-codegen to x86-64

Successfully compiles a substantial amount of LLVM IR

Performance numbers look promising

Future:

Support the remaining LLVM IR instructions

Performance tuning

Add support for another architecture

Add a simple register allocator?



  

Thank you.



  

References

http://github.com/mseaborn/tiny-llvm-codegen

http://skyeye.sourceforge.net

http://libcpu.org

http://github.com/mseaborn/tiny-llvm-codegen
http://skyeye.sourceforge.net/
http://libcpu.org/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

