
DYNAMIC BINARY INSTRUMENTATION FRAMEWORK USING LLVM BACKEND
{ YI-HONG LYU } INSTITUTE OF INFORMATION SCIENCE, ACADEMIA SINICA

BACKGROUNDS
Dynamic Binary Instrumentation (DBI) is adding
extra code to a program at the level of machine
code as it executes. It could be use to bug de-
tection, profile, replay, fault injection and watch
point. Today, most popular state-of-the-art DBI
systems such as Pin, DynamoRIO and Valgrind
target the same instruction set architecture (ISA)
where the guest binary and the host binary are
based on the same ISA.

OBJECTIVES OF OUR DBI
• Efficiency
• Retargetability
• Cross-ISA support
• Easy transformation from LLVM compile-

time instrumentation tools to DBI based
tools

WHY CROSS-ISA SUPPORT
Many popular applications on both Apple Store
and Google Play contain ARM native code. How-
ever, majority of ARM based systems are embed-
ded devices and hard to develop DBI tools.
On the other hand, building a cross-ISA DBI sys-
tem which runs ARM executables on an x86 ma-
chine has multiple advantages:

• The host system has much more resources
• The host machine often has greater comput-

ing power
• The host machines ISA has a larger address

space (e.g. 64bit vs. 32bit)

Therefore, it is very attractive to build cross-ISA
program analysis tools to instrument ARM exe-
cutables on x86 based systems.
PS. Instrument ARMv7 or earlier executables on
ARMv8 is still considered as a cross-ISA scenario.

WHY LLVM BASED DBI
There have been abundant compile-time instru-
mentation tools built upon LLVM. A LLVM based
DBI system can quickly leverage these LLVM
compile-time instrumentation tools.

ISSUES
• Annotation issue – Distinguish guest binary IR and emulation IR
• Hijack issue – How to intercept specific function calls

ARCHITECTURE

ANNOTATION

Guest Instructions:
movl $0x0, (%eax)

TCG IRs:
mov_i32 tmp2, eax
movi_i32 tmp0, $0x0
qemu_st32 tmp0, tmp2, $0xffffffffffffffff

LLVM IRs:
%3 = load i32* %eax,!guest !0
%4 = inttoptr i32 %3 to i32 addrspace(256)*,!guest !0
store volatile i32 0,i32 addrspace(256)* %4,!guest !0

Instrumented LLVM IRs:
%3 = load i32* %eax,!guest !0
%4 = inttoptr i32 %3 to i32 addrspace(256)*,!guest !0
GVA -> HVA translation
%5 = ptrtoint i32 addrspace(256)* %4 to i64
%6 = add i64 %5,0x7f8e00000000
/* Check code (17 LLVM IR) instrumented by ASan */
store volatile i32 0,i32 addrspace(256)* %4,!guest !0

HIJACK

Function Hijack Layer:
void *malloc(size_t size) {

int ret = syscall (TARGET_NR_malloc, size);
return (void *)ret;

}

The malloc function is compiled as a shared li-
brary and preloaded during guest binary loading
time by the guest dynamic linker.

SAME-ISA RESULTS
Inputs are i386 executables. ISA of the host ma-
chine is x86-64.

ADVANTAGE OF CROSS-ISA
Inputs are ARM executables.

SOURCE CODE CHANGES

LP TD C
ASan 26/1120 40/4392 98/4858MSan 80/2055 28/2269

Table 1: The table shows source code changes to in-
coporate Address Sanitizer (ASan) and Memory San-
itizer (MSan). LLVM instrumentation tools consist of
two parts: LLVM pass (LP) part and compiler-rt part.
Compiler-rt part consists of tool dedicated (TD) part
(e.g. only for ASan or only for MSan) and common (C)
part (shared by instrumentation tools).

CONTACT INFORMATION
LinkedIn www.linkedin.com/in/yihonglyu/
Email b95705030@ntu.edu.tw
Phone (+886) 963-233988

