

CPU Toolchain Launch Postmortem

Greg Bedwell

x86-64 AMD “Jaguar”
8-core CPU

1.84 TFLOPS AMD Radeon™
based GPU

8GB GDDR5 RAM

http://llvm.org/devmtg/2013-11/

postmortem noun

“an analysis or discussion of an event after it is over”

http://www.merriam-webster.com/dictionary/postmortem

Now that we have successfully launched
PlayStation®4 it is a good time to look back
on our initial period of development up to

that point

First, some history…

1990 Psy-Q
16-bit home systems

SN Systems Ltd. was
founded in 1988 to

provide development
tools for the games

industry

1994 Psy-Q
PlayStation®

Psy-Q included a version
of GCC that was highly

customized for the
needs of game

developers

2000 ProDG
PlayStation®2

Continued to provide
GCC but started

researching a
proprietary compiler
technology – “SNC”

2004 ProDG
PSP®
(PlayStation®Portable)

Provided SNC as part of
the ProDG suite of tools
although GCC was also

available

2006 ProDG
PlayStation®3

Sony Computer
Entertainment Inc.

acquired SN Systems
in 2005

Provided SNC as part of
the ProDG suite of tools
although GCC was also

available

2011

PlayStation®Vita

CPU Compiler is SNC

2013
PlayStation®4

CPU Compiler is Clang

The CPU compiler project is a global effort

Builds and build systems
(and test systems)

We wanted to make use
of all of our pre-existing

test suites and test
systems, which are

shared across all targets

Optimized Assertions Debug Info

Debug

MinSizeRel

Release

RelWithDebInfo

Optimized Assertions Debug Info

Debug

MinSizeRel

Release

RelWithDebInfo

2h 41m 24s

12m 56s
7m 44s

0

2000

4000

6000

8000

10000

12000

Debug Release+Asserts Release

se
co

n
d

s

Clang configuration effect on game build time

Too slow for continuous
integration testing!

Useful for continuous
integration testing but

still too much overhead
over the pure release
configuration of clang

Optimized Assertions Debug Info

Debug

Checking

Release

The same set of build
configurations as we use

for SNC

“Debug” for debugging

“Release” for releasing

“Checking”
(Release+Asserts) for

continuous integration
testing

Optimized Assertions Debug Info

Debug

Checking

Release

O

0

5

10

15

20

25

30

35

40

45

Default /Zi (Produce PDB) /Zi (Produce PDB) and /OPT:REF /OPT:REF

cl
an

g.
ex

e
 s

iz
e

 (
M

B
)

No executable size
overhead for enabling

debug data

Optimized Assertions Debug Info

Debug

Checking

Release

O

Optimized Assertions Debug Info

Debug

Checking

Release

Suppress Windows crash dialog box for

Checking and Release builds

Improving test coverage

Game code is
usually

BIG
For a new platform, the
amount of code that exists is
small

Things
we

know

Users value

CORRECTNESS
over all else

Things
we

know

Why write tests

when I can write a test generator?

Why write tests

when I can write a test generator?
already have
 _

Random
input

Result

Generate random C++
tests using SIMD

language extensions and
intrinsics to increase test

coverage

Result

Random
input

Result

Random
input

Result
Random

input

Result
Random

input

Result
Random

input

Result
Random

input

Undefined behaviour
makes runtime-

behaviour random
testing hard!

Result
Random

input

Solution: Use a ‘safe’
wrapper to make all
undefined behaviour

defined for the purpose of
the test

Reducing optimization bugs

bugpoint

Clang integration

Windows

An alternative approach

*Not representative of actual visuals

SNC’s
max_opts

SNC’s
max_opts

SNC’s
max_opts

SNC’s
max_opts

SNC’s
max_opts

SNC’s
max_opts

SNC optimizer

 SSA Form
 Rule Based

 Every transformation is guarded

 by a specific check

SNC’s
max_opts

SNC keeps an internal counter of
the number of transformations

it performs

Allows the user to specify a limit on the
command line after which no further

transformations can be performed

“Autochop” harness
SNC’s

max_opts
-O2

“Autochop” harness
SNC’s

max_opts
-O0

“Autochop” harness
SNC’s

max_opts -O0

-O2

“Autochop” harness
SNC’s

max_opts
-O0

-O2

“Autochop” harness
SNC’s

max_opts -O0

-O2

“Autochop” harness
SNC’s

max_opts We’ve found the
game source file

with the bad
transformation

“Autochop” harness
SNC’s

max_opts -Xmax_opts=2048

“Autochop” harness
SNC’s

max_opts -Xmax_opts=1024

“Autochop” harness
SNC’s

max_opts -Xmax_opts=512

“Autochop” harness
SNC’s

max_opts -Xmax_opts=988

“Autochop” harness
SNC’s

max_opts -Xmax_opts=989

Now we’ve found the
specific transformation
causing the miscompile

A compiler trace shows us
the culprit optimization

Narrowed down to a single difference in IR

Just a single line change in the IR

A question for the community:

SNC’s
max_opts Would this work in

LLVM/Clang?
(even if just at pass level)

The release process

Docs

End-user documentation is lacking

Release notes aimed at Clang/LLVM
developers, not users

Docs

We plan to contribute our
documentation improvements
to the community

Docs

We plan to contribute our
documentation improvements
to the community

Forward
compatibility

ABI
System
libraries

v3.x v3.x

ABI
v3.x

System
libraries

v4.x

ABI
v3.x v5.x

System
libraries

ABI
v3.x v6.x

System
libraries

ABI
v3.x v13.x

System
libraries

ABI

Maintaining a stable ABI is a

MUST
(including maintaining existing ABI bugs)

We have created a full IA64
ABI test suite

ABI
TEST

SUITE

We hope to contribute our test
suite to the community

(some logistics still to be worked out)

Developer reaction

But…

#pragma
optimize

Most requested feature by an

order of magnitude
and already supported by all the other major compilers

#pragma
optimize

This is the
most common

use-case:

Game runs too
slowly at –O0,

but is very
hard to debug

at –O2

#pragma
optimize

Solution: use a
pragma to selectively
disable optimization

on a small set of
functions to be

debugged

We proposed this on the mailing lists, but it is a
major change and we got a limited response

#pragma
optimize

Short term solution: function
level attribute to disable

optimization

Not user-friendly for
more than a very
small number of

functions at a time!

#pragma
optimize

Many of our users
abstract this away
behind a compiler-

independent
interface. Function

attribute does not fit
this model!

We still need a range-
based solution

In summary

Thanks to all of you who
helped make Clang and

LLVM great!

Our initial experience with
Clang and LLVM has been
very positive

There are still improvements

that can be made…

We will be working alongside
you to make them

