
1

Lowering C11 Atomics for ARM in LLVM
Reinoud Elhorst

Abstract—This report explores the way LLVM generates the
memory barriers needed to support the C11/C++11 atomics
for ARM. I measure the influence of memory barriers on
performance, and I show that in some cases LLVM generates
too many barriers. By leaving these barriers out, performance
increases significantly. I introduce two LLVM passes, which will
remove these extra barriers, improving performance in my test
by 40%. I believe one of these passes is ready to be upstreamed
to LLVM, while the other will need more testing.

Index Terms—C11, C++11, ARM, LLVM, atomics, dmb, mem-
ory synchronization, memory barriers

I. INTRODUCTION

Traditionally C and C++ were developed as languages for
single-threaded programs. The languages did not contain any
support for threads, and where threading was introduced in
libraries, for instance with libpthread, this leads to subtle
problems in programs because of compiler and hardware
instruction reordering [1]. Thread support should be written
into the language, and cannot be introduced as a library.

As one starts to work with shared memory (as threads do),
one has to deal with the memory model. A memory model,
in simple terms, describes the constraints that hold, when one
thread writes to shared memory and another thread reads from
the same memory location1. Specifically, when does one thread
“see” the writes from another thread, and in which order.
Only relatively recently have systems with multiple processing
units become mainstream2, and therefore the memory model
is something that mainstream language and program designers
only have had to deal with recently.

With the introduction of C11/C++11, these languages ac-
quired official support for multi-threading, solving the prob-
lems mentioned in [1]. Many C compilers had already intro-
duced proprietary instructions that allowed the same things,
but only with C11/C++11 these became part of the stan-
dard. C11/C++11 demands that programmers specify which
variables could be part of a data race (simultaneous read
and write, or two simultaneous writes to the same memory

R. Elhorst is a student at the Computer Laboratory of the University of
Cambridge. Email re302@cam.ac.uk.

1I talk about threads here, but the statements are equally valid for separate
programs accessing shared memory. The rest of this report however, as well
as most solutions proposed, mainly focuses on threads.

2This can be either multiple processors, multiple cores per processor, or
multiple concurrent instructions per core, as well as a CPU with other devices,
such as GPUs or network cards, that may write directly to memory.

location), by specifying them as atomic3. It also allows
programmers to specify the memory order they wish to use for
each separate load from or store to shared memory. By default
a “safe” memory order, sequentially consistent, is used, but a
programmer can specify more relaxed behaviour in order to
produce high performance code.

This report describes the work I did related to the memory
model and compilation of C11 code to ARM on LLVM. It
shows the influence of memory barriers on performance, the
current state of LLVM in dealing with atomics on ARM, and
proposes a patch to LLVM, which results in a speed-up of
the seqlock algorithm, presented in section II-A, by 40%. As
a result, the sequentially consistent version of the algorithm
becomes as fast as a version with a more relaxed memory
behaviour.

Even though all benchmarks done in this project were
written in C11, I expect to find similar results for C++11.
In addition, the optimizations proposed in this report apply
to steps late in the LLVM tool chain. For that reason other
languages compiling through LLVM may benefit from the
optimizations as well.

A. Memory model

A memory model describes how writes from one thread
should propagate to other threads.

Let’s start with a small example. We have 2 variables, x
and y, both initially being 0.

thread 0 thread 1
y = 1; x = 1;
print(x); print(y);

Naively we would argue that the possible printed results for
(x,y) can be (1,0) (if thread 0 runs faster), (0,1) (if
thread 1 runs faster) or (1,1) (if both threads run equally
fast). A value of (0,0) would not be possible, since if
print(x); prints 0, that must mean that thread 1 has not
gotten around to executing x = 1; yet. As a result, by the
time thread 1 gets to do print(y);, it must read the value 1,
since thread 0 already did the printing, so must surely already
have done the y = 1;.

Modern processor architectures have optimizations in the
way they deal with reads from and writes to memory. As
a result, on modern processors (for instance recent x86 and

3One should make a clear distinction between race conditions, and data
races. A race condition is the behaviour of a program where the output
is dependent on the sequence in which instructions in different threads are
executed. Race conditions are present in most multi-threaded programs and
are not bad, just something a programmer needs to be aware of. A data race
is a situation in C11/C++11 where there can be simultaneous read and write
access (or two simulaneous writes) to a variable not defined as atomic, and
is a program fault. C11/C++11 defines undefined behaviour for programs with
data races, some of the reasons for this are explained by [2].

2

ARM models) the code in the example may very well print
(0,0). This is because the architectures use a more relaxed
memory model than we assumed.

The “naively” assumed memory model is called sequential
consistency [3]. Architectures such as x86 and Sparc have a
weaker memory model, meaning that they give fewer guar-
antees, ARM and Power have even weaker memory models.
The reason for these weaker models is that the processors
can execute code faster when dealing with a weaker memory
model. This can be easily understood; if after each time the
processor does a write to the memory, it has to wait until
the value has actually been written to memory, this will slow
things down considerably, especially considering that memory
typically runs at a much slower speed than the processor.
Equally, if a processor can only start reading a variable from
memory the moment it needs it, it will waste several clock
cycles between starting the read and the moment the variable
is actually available4.

Most programmers will expect to be working with a se-
quentially consistent memory model, and when one spec-
ifies variables as atomic, C11/C++11 defines by default
a sequentially consistent memory model for these variables.
Alternatively a programmer may explicitly specify a memory
order on variable access. Sometimes we speak about a program
using a more relaxed memory model, in this case we mean
that some, most or all memory access specify a more relaxed
memory order. A programmer using a more relaxed memory
model usually does so in an effort to increase the program’s
performance. A more relaxed memory model may or may
not, depending on the hardware architecture and the compiler,
result in faster code (but should never be slower).

It is the compiler’s job to make sure that the programmed
memory model is also present in the generated machine
code. This means that firstly the compiler should not reorder
instructions in a way that invalidates the memory model; this
requirement is easy for the compiler to adhere to, by only
performing instruction reordering in cases when it knows it
is allowed to. Secondly the compiler must generate machine
code that tells the hardware not to reorder instructions in a
way that is not allowed under the requested memory model.
This is achieved by inserting memory barrier instructions
into the machine code. These barriers (or fences or memory
synchronizations) are mfences on x86, syncs and lwsyncs
on Power and dmbs on ARM (although sometimes a faster
result can be achieved by using some other codes, as shown
by [4]).

It will go into too much detail to discuss the memory models
defined in C11/C++11, some background can be gotten from
[5], with formal definitions in [6]. A more practical description
can be found in the C++ reference5. For the rest of this report it
suffices to say that the memory model sequentially consistent
is stronger than acquire/release, which is turn is stronger than
relaxed.

4It is worth noting that this is just an explanation why optimizations
in memory reads and writes are necessary. What actually happens when a
variable gets written to or read from memory differs per architecture and is
often more complex.

5http://en.cppreference.com/w/cpp/atomic/memory_order

B. Reasoning about memory models

As I mentioned before, the sequentially consistent memory
model can be seen as the one that a (naive) programmer would
expect to be working with. This is the reason why C11/C++11
states that if no memory model has been specified for access
to a variable specified as atomic, the sequentially consistent
memory model should be used. In addition, most research on
algorithms for shared memory systems assumes a sequentially
consistent model.

Most programmers find it hard to reason about concur-
rency in programs, and reasoning about it when choosing
a weaker-than-sequentially-consistent model makes the task
much harder. It is very hard to test whether your code is
correct; if it runs correctly, it is hard to test whether your
current compiler, on your current hardware, generated correct
code ([4] showed that some behaviour occurs in less than
one in a million cases, some conditions that are allowed to
occur on an architecture according to the specifications, do
not actually happen on specific subarchitectures), it is harder
to test this for all compilers for all architectures, and even if
you could succesfully show this, it does not mean that the code
is correct. There are some large scale projects using relaxed
memory models, notably the Linux kernel, but it is not clear
whether the implementation is correct ([7] seems to suggest
it is not in all cases). For smaller pieces of code, formal proof
can be used to show correctness.

If the compiler were able to compile code written with a
stronger memory model, to execute just as fast as if written
for a weaker memory model, this would take away the need
for the programmer to reason about memory models.

C. Environment

In this report I run several benchmarks, and look at the
result of several compile steps on LLVM with a clang front
end6. The most recent LLVM and clang development versions
were used, those of svn head rev 198020, 25 December
2013. It was compiled with debug enabled, although de-
bug information was removed in some cases in this re-
port, in order to fit the results on the page. Unless stated
otherwise, no changes were made in LLVM or clang, the
-O3 flag was used for compilation, compilation target was
armv7l-unknown-linux-gnueabihf, and the pthread
library was compiled in. Because it was non-trivial to get the
C11 stdatomic.h library working on the test platform, all
code was written using the LLVM-specific atomics notation.
Internally the C11 notation and the LLVM notation are equiv-
alent, and all results should be considered equally valid as in
the case the C11 notation had been used.

Performance tests were done on an Odroid U27, a machine
with a quad core ARM processor. All measurements in this
report are wall clock time, measured on the Odroid’s real time
clock. Since the load on the test machine was low, and I
used at most two threads, the wall clock time will accurately

6LLVM is an open-source compiler which supports multiple source
languages and compile targets. Clang is the C/C++ frontend to LLVM.
http://www.llvm.org/

7http://en.wikipedia.org/wiki/Odroid

3

measure performance. When timings are mentioned, these are
the average of many runs.

D. Acknowledgements

The project would not have been possible without the
help from, discussions with and patient explanations of the
intricacies of the memory model on ARM by Mark Batty and
Shaken Flur. In addition I thank Renato Golin from Linaro for
giving me access to the Odroid U2 machine, so that I could
run my benchmarks. Finally thanks goes out to David Chisnall,
for suggesting the project in the first place, and making sure
I arrived at the starting line with enough knowledge to see it
through to the end.

II. PROJECT

A. Sequential lock

The sequential lock (seqlock) is a locking mechanism,
developed for the linux kernel. For the tests I use a simplified
version of the seqlock algorithm, which supports just one
writer thread (listing 1). The seqlock algorithm presented
makes sure that a call to read will only ever return values
for v1 and v2 that were written in the same write call. If,
for instance, v1 and v2 are the top and bottom 32 bits of a
64-bit number, it would be impossible for any reader to end
up reading the top and bottom 32 bits from different numbers.

Listing 1: The simplified seqlock algorithm used in the tests
in C11
atomic int lock=0, x1=0, x2=0;

void write(int v1, int v2) {
int local_lock = load_relaxed(lock);
store(lock, ++local_lock);
store(x1, v1);
store(x2, v2);
store(lock, ++local_lock);

}

void read(int *v1, int *v2) {
int lv1, lv2, local_lock;
while (true) {

local_lock = load(lock);
if (local_lock & 1) continue;
lv1 = load(x1);
lv2 = load(x2);
if (local_lock == load(lock)) {

*v1 = lv1;
*v2 = lv2;
return;

}
}

}

The algorithm contains one load_relaxed, which is a
load with memory order relaxed (this is correct because only
this thread is writing to the lock variable, and a load will
always see writes that happened before in the same thread).
All other calls to load and store are sequentially consistent.
Most programmers with a background in concurrency will be
able to reason about this code and understand that it will
indeed work in the way it is intended.

The seqlock algorithm will also be correct if we interpret all
loads as having memory model acquire, and all stores as

memory model release8. Because we both have an intuitively
correct sequentially consistent version, and a correct version
with a weaker memory model, this makes the algorithm
ideal for testing. [8] showed that there are more versions of
this algorithm using weaker memory models. These versions
are not being considered in this report since they will not
contribute to the main findings.

The actual tests writes the numbers (0, 0), (1, 1), ... , (109−
1, 109−1) into (x1, x2). Another thread reads back the values
for (x1, x2) and asserts that x1 == x2. After a read, this
thread enters a short sleep, to simulate a consumer reading
some value and doing something with it. The actual test code
has the writer and reader in a loop (listing 2). This allows
the compiler to move the initialization out of the loop, and
the local_lock variable can be local to the function and does
not require the relaxed load. One might argue that this makes
the test case contrived; on the other hand will it make the
inspection of the machine code in the loop later a lot easier,
and allow us to see some interesting features. I also argue that
the conclusions drawn from these tests remain equally valid
in the general case.

Listing 2: version with the seqlock in a loop
atomic_int lock=0, x1=0, x2=0;

void writer() {
int i, local_lock=0;
for (i=1; i<=MAXI; i++) {

store(lock, ++local_lock);
store(x1, i);
store(x2, i);
store(lock, ++local_lock);

}
}

void reader() {
int v1=0, v2=0, i=0, ii;
while (v1 < MAXI - 1) {

i++;
int lv1, lv2, local_lock;
while (true) {

local_lock = load(lock);
if (local_lock & 1) continue;
v1 = load(x1);
v2 = load(x2);
if (local_lock == load(lock)) {

break;
}

}
assert(v1 == v2);
nanosleep(SLEEPTIME, NULL);

}
}

B. Influence of the memory model on performance

The seqlock program is compiled in 3 ways:
• Implied memory model. No memory model gets specified.

This means that I define macros
#define load(x) x
#define store(x,y) x=y

8A formal proof for this statement can be made, but is not included in this
report.

4

• Sequential consistency: Use the sequentially consistent
memory model for everything9.

#define load(x) \
__c11_atomic_load(&x, __ATOMIC_SEQ_CST)

#define store(x,y) \
__c11_atomic_store(&x, y, __ATOMIC_SEQ_CST)

• Acquire/release: Use the acquire for the loads and release
for the stores.

#define load(x) \
__c11_atomic_load(&x, __ATOMIC_ACQUIRE)

#define store(x,y) \
__c11_atomic_store(&x, y, __ATOMIC_RELEASE)

0

10

20

30

40

50

60

implied mm seq cst acq/rel

ex
ec

ut
io

n
tim

e
(s

)

-O0
-O3

Fig. 1: Seqlock algorithm using different memory models and
different optimization settings

According to the C11 standard, the implicit model and
the sequentially consistent model are equivalent. One would
expect the implicit and sequentially consistent versions of the
algorithm to have equal performance, and the acquire/release
version to be faster, if atomics are implemented well in LLVM.
However figure 1 clearly shows that in the case we do not
ask the compiler for optimizations (-O0), the sequentially
consistent code performs considerably worse than the one with
the implied memory model. It is outside the scope of this
project to determine where this difference comes from; the
LLVM IR shows that each atomic load and store goes through
an atomictmp or atomicdst variable when explicitly
specifying that they should be done sequentially consistent.
In my opinion it would make sense if both an implicit and
explicit memory model load/store were compiled through the
same code path.

Interestingly enough in the -O3 optimization, the sequen-
tially consistent memory model seems to be the faster of the
two.

As expected, the algorithm with the weaker memory model
runs faster. To understand where this difference comes from,
one must look at the generated machine code (listing 3).

9Remember that for practical reasons I use the LLVM atomics notation,
not the C11 notation. Since the two notations are equivalent in LLVM, all
conclusions are valid for the case where C11 atomics were used as well.

Listing 3: Machine code for the loop in the writer function,
optimization -O3, left the sequentially consistent version, right
the acquire/release
1 .LBB0_1: .LBB0_1:
2 dmb ish dmb ish
3 sub r4, r1, #1 sub r4, r1, #1
4 str r4, [r2] str r4, [r2]
5 add r0, r0, #1 add r0, r0, #1
6 dmb ish dmb ish
7 cmp r0, r3
8 dmb ish
9 str r0, [r12] str r0, [r12]

10 dmb ish dmb ish
11 dmb ish
12 str r0, [lr] str r0, [lr]
13 dmb ish dmb ish
14 dmb ish
15 str r1, [r2] str r1, [r2]
16 add r1, r1, #2 add r1, r1, #2
17 dmb ish
18 cmp r0, r3
19 bne .LBB0_1 bne .LBB0_1

Appendix A explains the machine code in more detail, the
interesting thing to note is that the two versions only differ in
two places: the cmp in line (7) is in the acquire/release version
in line (18), and the sequentially consistent version has a dmb
in 4 places — lines (8), (11), (14) and (17) —, where the
acquire/release version has none. A similar pattern can be seen
in the loop portion of the reader function (not displayed
in this report). Since a dmb is a barrier, it is expected that
the sequentially consistent version of the code, which has to
maintain a stronger memory model, has more. The hypothesis
is that dmbs are relatively expensive operations, and that they
are responsible for the slower execution in the sequentially
consistent version.

C. Double barriers

The machine code in listing 3 was generated by applying
mappings between C11 code and ARM machine code, such
as those published by Peter Sewell10. Although none of these
mappings can be made smaller (i.e. every dmb is needed for
the mapping to be correct), sometimes the resulting code does
contain more dmbs than are necessary. For instance, a single
store operation is mapped to dmb; str; dmb. Two stores in
a row in this case would result in dmb; str; dmb; dmb;
str; dmb. The ARM memory model shows that two dmbs
in a row do not strengthen the memory model more than a
single dmb [4]. This means that we are allowed to remove
the second dmb. For completeness I also refer to [9] which
described similar work for the x86 architecture, including
formal proofs.

The hypothesis from the last section is that dmbs are
expensive. Listing 3 shows two places in the sequentially
consistent code where two dmbs appear in a row. For “Opti-
mization A”, I remove one of each pair, and make a similiar
optimization to the reader’s loop. Figure 2 shows that this
indeed gives a considerable speedup. A second optimization

10http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html

5

0
5

10
15
20
25
30
35
40

O
ri

gi
na

l

O
pt

im
iz

at
io

n
A

O
pt

im
iz

at
io

n
B

O
pt

im
iz

at
io

n
C

A
cq

ui
re

/r
el

ea
se

ex
ec

ut
io

n
tim

e
(s

)

Fig. 2: Different optimizations for the sequentially consistent
seqlock algorithm (red) compared to the original and the
acquire/release version (blue).

can be made by realizing that the cmp in line (7) does not
do any memory access, and therefore the state of the memory
model is not influenced by it: the dmbs in lines (6) and (8)
can be considered to be following one another as far as the
memory is concerned, and therefore the dmb at line (8) can
be removed. Again a similar optimization can be made in the
reader’s loop, this result is shown as “Optimization B”.

Finally there is one more double dmb that can be eliminated.
The loop .LBB0_1 will loop 109 times, before exiting. This
means that the dmb at line (17) is followed in almost all
cases by the dmb in line (2) (the bne statement in between
has the same properties in relation to memory as the cmp
statement discussed before). As a result the dmb statement in
line (17) only has to be executed when the loop ends; this can
be achieved by placing the statement past the bne statement11.
This optimization (again with a similar one in the reader’s
loop), is shown as "Optimization C".

Figure 2 shows that the optimizations where I removed
double dmbs, or moved dmbs out of the loop, resulted in
considerable speedups, confirming the hypothesis of the last
section. In addition listing 4 shows that removing double dmbs
from the writer’s loop gives code that is almost equal to the
acquire/release version; the reader’s loop is also almost the
same. In the tests the optimization C version is actually faster
than the acquire/release version; I do not know the reason for
this although I give a possible explanation for this in appendix
B.

I want to emphasize that even though Optimization C
and the acquire/release version are the same for all practical
matters (the final dmb can even be removed because after
it nothing happens but the thread ending, and the cmp can

11Technically this means placing it in the next basic block, or even creating
a new basic block.

be moved in either of them so that they line up), this does
not mean that I rewrote the algorithm from a sequentially
consistent to an acquire release memory model, nor is this
a proof that the acquire/release version of the algorithm is
correct. All it shows is that under this specific ARM memory
model mapping the two memory models may share the same
machine code.

Again I want to point to [8], which shows additional relaxed
memory behaviour implementations of the seqlock algorithm,
some of which might be faster than the versions shown here;
this was not tested.

D. Remove double barriers in an LLVM pass

LLVM runs passes at different points during the compila-
tion. Passes can, among other things, be used for optimization.
The results of the last section show that a pass which removes
double dmbs is at least in some cases beneficial, and I am
confident that there are not many cases where it is harmful to
do so.

Such a pass cannot run against the LLVM IR, since it has
optimizations that are specific to the ARM machine code,
hence it has to run in the ARM code generation step.

I wrote two passes. Optimization A and B from the last
section are being handled by the ARMRemoveDouble-
BarriersPass12. The pass iterates over a basic block, looks
for dmbs, and removes the dmb, if the dmb could be moved
up until it is next to another dmb. In the seqlock example in
the last section it was easy to reason why it is correct to move
the dmb past the cmp. In the pass I assume the dmb is allowed
to move past any instruction which does not have any memory
access, according to MachineInstr::mayLoad() and
MachineInstr::mayStore().

Optimization C is harder to implement. The correct way
would be to determine for each basic block whether it starts
with a dmb (starts with here means that it is possible to move
a dmb in such a way that it is the first instruction), or ends in
one as last instruction before branch statements (again, after
moving). A control flow graph will then show places where
double dmbs happen, and one can decide whether these can
be removed entirely, or moved to another or to a new basic
block. Unlike the pass for optimization A and B, this pass may
increase the code size, and the pass should avoid actions that
do so in case optimization target -Os is chosen. In addition,
moving dmbs so that they get executed at a different point in
the program, may actually slow things down (in Optimizations
A and B we always only remove dmbs; in Optimization C
we may optimize a path through the code that is hardly ever
taken, by moving the dmb on the much travelled code path to
a possibly slower position, only to remove the dmb in the path
not often taken). Adding this optimization pass does therefore
require more consideration.

As a proof of concept I implemented a simple version
of a pass for Optimization C: ARMMoveBarriersPast-
BranchesPass13. For a basic block it looks whether it ends
in a dmb and some of the successor blocks start in a dmb,

12https://github.com/reinhrst/llvm/commit/c4f073
13https://github.com/reinhrst/llvm/commit/fcf796

6

Listing 4: Loop of the writer function of the seqlock algorithm, left the sequentially consistent version, right the
acquire/release version, in the middle the version with the double dmbs removed by hand (Optimization C)
1 .LBB0_1: .LBB0_1: .LBB0_1:
2 dmb ish dmb ish dmb ish
3 sub r4, r1, #1 sub r4, t1, #1 sub r4, r1, #1
4 str r4, [r2] str r4, [r2] str r4, [r2]
5 add r0, r0, #1 add r0, r0, #1 add r0, r0, #1
6 dmb ish dmb ish dmb ish
7 cmp r0, r3 cmp r0, r3
8 dmb ish
9 str r0, [r12] str r0, [r12] str r0, [r12]

10 dmb ish dmb ish dmb ish
11 dmb ish
12 str r0, [lr] str r0, [lr] str r0, [lr]
13 dmb ish dmb ish dmb ish
14 dmb ish
15 str r1, [r2] str r1, [r2] str r1, [r2]
16 add r1, r1, #2 add r1, r1, #2 add r1, r1, #2
17 dmb ish
18 cmp r0, r3
19 bne .LBB0_1 bne .LBB0_1 bne .LBB0_1
20 dmb ish

again after moving. If this is the case it will consider removing
the dmb at the end of the current block, and adding it to any
successor block not staring in the dmb. It will only do so if
the successor block has only one predecessor, hence the block
it moves to will at most be executed as many times as the
dmb we removed.

I feel confident that the ARMRemoveDoubleBarriers-
Pass can be sent upstream for inclusion in LLVM. The
ARMMoveBarriersPastBranchesPass requires more
consideration, because of the doubts described above. Testing
should be done to see that it indeed results in a speedup in
the majority of the cases, and perhaps a more sophisticated
method should be used to rearange the dmbs.

With these passes in place, LLVM compiles the test seqlock
algorithm to the hand optimized version shown in Optimiza-
tion 3. This means that the sequentially consistent version runs
40% faster than without the optimizations, and now has the
same performance as the acquire/release version, thus taking
the burden off the programmer to have to reason about memory
models in this particular case.

REFERENCES

[1] H.-J. Boehm, “Threads cannot be implemented as a library,” in ACM
Sigplan Notices, vol. 40, no. 6. ACM, 2005, pp. 261–268.

[2] D. Vyukov, “Benign data races: what could possibly go wrong?”
2013. [Online]. Available: http://software.intel.com/en-us/blogs/2013/01/
06/benign-data-races-what-could-possibly-go-wrong

[3] L. Lamport, “How to make a multiprocessor computer that correctly
executes multiprocess programs,” Computers, IEEE Transactions on, vol.
100, no. 9, pp. 690–691, 1979.

[4] L. Maranget, S. Sarkar, and P. Sewell, “A tutorial introduction to the
ARM and POWER relaxed memory models,” 2012.

[5] H.-J. Boehm and S. V. Adve, “Foundations of the C++ concurrency
memory model,” in ACM SIGPLAN Notices, vol. 43, no. 6. ACM,
2008, pp. 68–78.

[6] M. Batty, S. Owens, S. Sarkar, P. Sewell, and T. Weber, “Mathematizing
C++ concurrency,” in ACM SIGPLAN Notices, vol. 46, no. 1. ACM,
2011, pp. 55–66.

[7] W. Deacon, “From weak to weedy, effective use of memory barriers in
the ARM Linux kernel,” 2013.

[8] H.-J. Boehm, “Can seqlocks get along with programming language
memory models?” in Proceedings of the 2012 ACM SIGPLAN Workshop
on Memory Systems Performance and Correctness. ACM, 2012, pp.
12–20.

[9] V. Vafeiadis and F. Z. Nardelli, “Verifying fence elimination optimisa-
tions,” in Static Analysis. Springer, 2011, pp. 146–162.

APPENDIX A
EXPLANATION OF THE MACHINE CODE

This appendix explains how to read the machine code used
in this report.

Throughout this report we focus on the loop of the writer
function. In C this are 4 store statements, with some flow
control to make the loop.

1 for (i=1; i<=MAXI; i++) {
2 store(lock, ++local_lock);
3 store(x1, i);
4 store(x2, i);
5 store(lock, ++local_lock);
6 }

The machine code for the sequentially consistent memory
model looks thus. Because the syntax of might look unfamiliar,
I added the C-like equivalent between brackets.

1 .LBB0_1:
2 (2) dmb ish (barrier)
3 (2) sub r4, r1, #1 (r4=r1-1)
4 (2) str r4, [r2] (*r2=r4)
5 (1) add r0, r0, #1 (r0=r0+1)
6 (2) dmb ish (barrier)
7 (1) cmp r0, r3 (r0 == r3?)
8 (3) dmb ish (barrier)
9 (3) str r0, [r12] (*r12=r0)

10 (3) dmb ish (barrier)
11 (4) dmb ish (barrier)
12 (4) str r0, [lr] (*lr=r0)
13 (4) dmb ish (barrier)
14 (5) dmb ish (barrier)
15 (5) str r1, [r2] (*r2=r1)
16 (5) add r1, r1, #2 (r1=r1+2)
17 (5) dmb ish (barrier)
18 (1) bne .LBB0_1 (goto .LBB0_1 if not equal)

7

All “variables” in this code are registers, many of which
were filled before. They do not relate one-to-one to the C
variables, but some do. r0 is i, r2, r12 and lr contain
the addresses of lock, x1 and x2. r3 contains the value
999,999,999, the highest value in the loop. The comparison to
see if this is the last loop iteration is made in line (7), even
though this is only acted upon by the bne in the last line.

In front of each line of machine code I specified to which
line C code it relates. This makes it easy to see that the
(sequentially consistent) stores are indeed translated to a dmb,
followed by a str, followed by another dmb, as is defined in
the mapping14.

APPENDIX B
INTERACTION BETWEEN THREADS

Seqlock is an algorithm that prevents write starvation. Since
there is no lock on the writer thread (in the one-writer-version),
the writer should always be able to keep writing at the same
speed. The price you pay is that if there is a lot of writing, a
reader may have to try many times before it manages to read
some data correctly.

0

20

40

60

80

100

0 20 40 60 80 100

ex
ec

ut
io

n
tim

e
(s

)

sleeptime (ms)

Fig. 3: Seqlock execution time for different sleep times in the
reader thread

According to the description above, the writing thread
should not in any way be influenced by what the reading thread
does (as long as both threads run on their own core). This
however turns out not to be true on the ARM architecture. In
the tests in the body of the report, there was a 100ms sleep
between reads. As figure 3 shows, a smaller sleep results in
a slower overall execution. This is not because the CPU is
busier; it does not matter if we change the sleep command
into a busy sleep loop.

I did not research where this difference in performance
comes from. One possible reason is that the reader generated
more traffic on the memory bus, thereby slowing down the

14http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html

writer. An alternative explanation is that somehow the writer
has to “help” in handling the dmbs that the reader calls
(for instance requiring the writer to signal that it does not
have writes for synchronization). Additional research is needed
here, but it is something a programmer of highly optimized
code will have to take into account.

Above also may explain why there is a small but clear
difference in performance between our Optimization C code
and the acquire/release code we see in figure 2 on page 5, even
though the machine code is almost the same. If, because of
a small difference in the order of the instructions, the reader
is slightly more likely to have to retry the read, this leads to
the reader processing more dmbs, thereby slowing the writer
down. In this light one might consider seqlock to be unsuitable
for these benchmarking tests. I believe that the algorithm
is appropriate, as long as one is aware of this behaviour,
since actual (non-benchmarking) code might exhibit similar
behaviour.

