
What’s new in C++14,
and how you can take

advantage of it

Marshall Clow
Qualcomm

mclow.lists@gmail.comEuro LLVM 2014

C++1y status

DIS approved in October (Chicago)

FDIS approved in February (Issaquah)

Voting in progress

Voting concludes in August

How did we get here?

C++98/03

TR1

C++11

C++14

... and beyond

C++11 introduced many
new features and concepts

threading

range-based for loops

auto

lambdas

move semantics

variadic templates and
tuples

user-defined literals

regular expressions

uniform initialization

unordered containers

std::chrono

constexpr

C++14 is much more
focused

Fleshing out the features introduced in C++11

A few new features

Fixing bugs

Fleshing out

constexpr

tuples

make_XXX

constexpr

Now much more full-featured

No more torturing of the ?: operator

loops, variables

Tuple enhancements

find element by type

get<string> (tup)

Compile-time integer sequences

make_XXX

make_move_iterator (C++11)

make_shared (C++11)

make_unique (C++14)

make_reverse_iterator (C++14)

New features

Polymorphic lambdas

Variable templates

Digit separators

Binary literals

Heterogeneous lookup in containers

Quoted IO of strings

Polymorphic lambdas

An aid to using lambdas in generic code

[=y](auto x) { return x == y; }

Variable templates

Before, you could use templated classes, structs,
functions

template<typename T>

constexpr T pi = T{3.1415926535897932385};

Digit separators

After much debate, the committee settled on single
quote

unsigned long long x = 123’456’789;

Binary literals

Now can use bit patterns directly

unsigned int foo = 0b001001010; // 74

Heterogenous Lookup

Consider std::map<string, Foo> x;

x.find (“abc”)

What does this do?

Quoted I/O in strings

string x{"Hello World"};
strstream ss;
!
ss << x;
string y;
ss >> y;
assert (x == y);

Quoted I/O in strings (2)

string x{"Hello World"};
strstream ss;
!
ss << quoted(x);
string y;
ss >> quoted(y);
assert (x == y);

Fixing bugs

Fixing some bad specifications

Restoring the strong exception guarantee in
vector::push_back

Disallowing temporaries in some places

Disallowing temporaries

Some parts of the standard library return references
into containers that are passed to them

if the container is a temporary, then these references
are “stale” as soon as they are returned.

Temporary example
string f() { return "m123.txt"; }

const regex r(R"(m(\d+).*)");
smatch m;
if (regex_match(f(), m, r))
 DoSomethingWith(m[1]);

Implementation Status

C++98/03 took *years* to implement.

C++11 implementation is ongoing.

C++14 implementation is also ongoing.

C++11 implementations
clang & libc++ shipped a complete C++11
implementation in 3.3 (June 2013)

gcc supported the full language in 4.8.1 (May 2013),
and libstdc++ will be complete in 4.9 (real soon now)

Visual C++ has implemented many of the language and
library features, but not all (more on VC++ later)

Oracle shipped a beta compiler with limited C++11
support last week.

C++14 implementations
clang & libc++ shipped a complete C++1y
implementation in 3.4 (January 2014)

clang & libc++ will ship a complete C++14
implementation in 3.5 (May/June? 2014)

gcc & libstdc++ support a few C++14 features in 4.8,
more in 4.9

Visual C++ is implementing C++11 and C++14
together.

Rolling out features in “technology previews”

What comes next?

What the heck is a TS, anyway?

C++1z?

Technical Specifications

Filesystem

Library Extensions

Array Extensions

Parallelism

Concepts

Modules

Committee Study groups

Ranges

Networking

Reflection

... and others

Summary
For a long time, C++ was a static (unchanging)
language.

Not any more!

Lots of people are doing research and experimentation
with C++

The tools provided by LLVM and clang are enabling
this

The goal is to make C++ a “better” language without
sacrificing those things which it excels at (performance,
generality, portability, etc).

Questions?

