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Senior researcher at the Swedish Institute of Computer Science
(SICS) working on programming languages, tools and distributed
systems.
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What this talk is About

Automatic synthesis of a JIT-compiling VM for Erlang.

Our experiences with LLVM and MCJIT.
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Just-In-Time (JIT) Compilation

Decide at runtime to compile “hot” parts to native code.

Fairly common implementation technique.

Python (Psyco, PyPy)
Smalltalk (Cog)
Java (HotSpot)
JavaScript (SquirrelFish Extreme, SpiderMonkey)



Erlang

Functional language developed by Ericsson.

Soft real-time.

Multi-threaded with share-nothing semantics.

Message passing.

Powerful supervision primitives.

Hot code loading and replacement.

OTP: Framework for writing fault-tolerant applications.

Compiled to virtual machine (VM), BEAM.



BEAM: Specification & Implementation

BEAM is the name of the Erlang VM.

A register machine.

Approximately 150 instructions which are specialized to
around 450 macro-instructions using a peephole optimizer
during code loading.

Instructions are CISC-like.

Hand-written C (mostly) directly threaded interpreter.

No authoritative description of the semantics of the VM
except the implementation source code!

HiPE – a ahead-of-time native compiler

Traditional back-end for x86, PowerPC, SPARC, ARM
ErLLVM back-end based on LLVM



Motivation

A JIT compiler increases flexibility.

Compiled BEAM modules are platform independent.

Cross-module optimization.

Integrates naturally with code upgrade.



Project Goals

Goals:

Do as little manual work as possible.

Preserve the semantics of plain BEAM.

Automatically stay in sync with the plain BEAM, i.e. if bugs
are fixed in the interpreter the JIT should not have to be
modified manually.

Have a native code generator which is state-of-the-art.

Plan:

Parse and extract semantics from the C implementation.

Transform the parsed C source to C fragments which are then
reassembled into a replacement VM which includes a
JIT-compiler.
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Just-In-Time (JIT) Compilation as it Applies to
BEAM

Use light-weight profiling to detect when we are at a place
which is frequently executed.

Trace the flow of execution until we get back to the same
place.

Compile trace to native code.

NOTE: We are tracing the execution flow in the interpreter,
the granularity is finer than BEAM opcodes.

Profile Trace Generate Native Code Run Native



BEAMJIT: What is Needed?

Three basic execution modes

Profiling
Tracing
Native

Interpreter loop has to be modified to support mode
switching:

Turn on/off tracing.
Passing state to/from native code.

Native code generation: Need the semantics for each
instruction.



Profiling

First step in figuring out what to JIT-compile

Let Erlang compiler insert profile instructions at locations
which can be the head of a loop

Maintain a time stamp and counter for each location

Measure execution intensity by incrementing a counter if the
location was visited recently, reset otherwise

Trigger tracing when count is high enough

Blacklist locations which:

Never produce a successful trace.
Where we, when executing native code, leave the trace
without executing the loop at least once.
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Extracting the Semantics of the BEAM Opcodes

Use libclang to parse and simplify the interpreter source:

Use Erlang binding for libclang.

Flatten variable scopes.

Remove loops, replace by if + goto.

Make fall-troughs explicit.

Turn structured C into a spaghetti of Basic Blocks (BB), CFG
– Control Flow Graph.

Do liveness-analysis of variables.
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Näıve Tracing

Use a new version of the interpreter, generated from the CFG.

Generate a tracing and non-tracing version of each opcode.

For each basic block we pass through, record basic block
identity and PC.

Abort trace if too long.

If we reach the profile instruction we started the trace from –
We have found a loop!



Näıve Profiling to Tracing Mode Switch

Direct
threading

0xCDAADEF0

0xCDAADEFF

0xCDAACAF8

0xCDAAD432

0xDEADBEEF

PC

x = x + 1;
...

0XCDAACAF8

Indirect threading
17

42

97

23

12

PC

x = x + 1;
...

0XCDAACAF8

95: 0xCBAADEF0

96: 0xCDAEDEFF

97: 0xCDAACAF8

98: 0xCDAAD432

99: 0xDEADBEEF

Profiling Opcodes

95: 0xCBBADEF0

96: 0xCBAEDEFF

97: 0xCBAACAF8

98: 0xCBAAD432

99: 0xDBADBEEF

Tracing Opcodes

record_trace_bb(4711, PC)
x = x + 1;
...

0XCBAACAF8

Have two implementations of each opcode.

Switch the table of opcodes.

Compiler has to assume that a mode switch can take place at
any block → performance suffers



Refined Tracing

Modify the interpreter loop as little as possible.

Have separate trace interpreter.

Limit entry to the interpreter at instruction boundaries.

Have separate cleanup-interpreter to continue execution to
the next instruction boundary.

Reuse cleanup-interpreter when returning from native mode.

Profiling Tracing Native Cleanup



Further Tracing Refinements

Ensure that we have a representative trace:

Follow along a previously created trace.

Allow multi-path traces.

Generate native code when the trace has not grown for N
successive iterations.

Enforce limit on total size of trace.



Trace Compression

Large CFGs slow down LLVM optimization and native code
generation significantly.

Solution: Compress traces to remove shared segments.
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Native-code Generation

Glue together LLVM-IR-fragments for the trace.

Guards are inserted to make sure we stay on the traced path.

Fragments are extracted from the CFG as C-source, compiled
to IR using clang (at build-time) and loaded during system
initialization.

Hand the resulting IR off to LLVM for the rest.

beam_emu.c CFG

fragments.c

jit_emu.c Trace

LLVM optimizer Native codeBitcode IR generator



Calling Native Code

Switching from interpreter to native code:

Use liveness information from the CFG.

Package native-code as a function where the arguments are
the live variables.

Switching from native code to interpreter:

The cleanup-interpreter is a set of functions, one for each BB,
which tail-recursively calls the next BB. Arguments are the
live variables.

Cleanup-interpreter packs up live variables in a structure
which the interpreter unpacks on return.



Performance Improvements

Run native-code generation in separate thread.

Erlang-aware constant propagation:

Eliminate loads from code (constant at compile time).
Will eliminate loading of immediates.
Will eliminate many of the guards.



Performance

Steady state:

Eliminates most of the instruction decode overhead.

Up to 50% reduction in runtime.

Well-behaved programs: around 25%.

Programs using cute tricks such as unrolling: up to 200%
increase in runtime.



Future Work

Full SMP support.

Box/unboxing-aware constant propagation.

Extend JIT support to fold in primitives.
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LLVM’s Strengths

Access to the C AST via libClang.

Quality of generated code.

The optimization framework.



LLVM’s Weaknesses

No thread-safety – Extra housekeeping to do things in the
correct context.

Compilation could be much faster.

Native code has to be packaged as C-function – Would really
like to have enough control to patch generated native code.

Clang/LLVM does bad job on the main interpreter:

Allocates the VM’s stack- and instruction-pointers on the
stack.
Inserts extra instruction sequence before indirect jumps (when
dispatching to next VM instruction), GCC appears to insert it
at the branch target and only if needed.

Costs us 15-20%
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Questions?
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