
BEAMJIT: An LLVM based just-in-time compiler
for Erlang

Frej Drejhammar
<frej@sics.se>

140407



Who am I?

Senior researcher at the Swedish Institute of Computer Science
(SICS) working on programming languages, tools and distributed
systems.



Acknowledgments

Project funded by Ericsson AB.

Joint work with Lars Rasmusson <lra@sics.se>.



What this talk is About

Automatic synthesis of a JIT-compiling VM for Erlang.

Our experiences with LLVM and MCJIT.



Outline

Background
Just-In-Time Compilation
Erlang
BEAM: Specification & Implementation
Project Goals

JIT:ing as it applies to BEAM
Profiling
Tracing
Generating and Calling Native Code
Future Work

LLVM’s Strengths and Weaknesses
Questions



Just-In-Time (JIT) Compilation

Decide at runtime to compile “hot” parts to native code.

Fairly common implementation technique.

Python (Psyco, PyPy)
Smalltalk (Cog)
Java (HotSpot)
JavaScript (SquirrelFish Extreme, SpiderMonkey)



Erlang

Functional language developed by Ericsson.

Soft real-time.

Multi-threaded with share-nothing semantics.

Message passing.

Powerful supervision primitives.

Hot code loading and replacement.

OTP: Framework for writing fault-tolerant applications.

Compiled to virtual machine (VM), BEAM.



BEAM: Specification & Implementation

BEAM is the name of the Erlang VM.

A register machine.

Approximately 150 instructions which are specialized to
around 450 macro-instructions using a peephole optimizer
during code loading.

Instructions are CISC-like.

Hand-written C (mostly) directly threaded interpreter.

No authoritative description of the semantics of the VM
except the implementation source code!

HiPE – a ahead-of-time native compiler

Traditional back-end for x86, PowerPC, SPARC, ARM
ErLLVM back-end based on LLVM



Motivation

A JIT compiler increases flexibility.

Compiled BEAM modules are platform independent.

Cross-module optimization.

Integrates naturally with code upgrade.



Project Goals

Goals:

Do as little manual work as possible.

Preserve the semantics of plain BEAM.

Automatically stay in sync with the plain BEAM, i.e. if bugs
are fixed in the interpreter the JIT should not have to be
modified manually.

Have a native code generator which is state-of-the-art.

Plan:

Parse and extract semantics from the C implementation.

Transform the parsed C source to C fragments which are then
reassembled into a replacement VM which includes a
JIT-compiler.



Outline

Background
Just-In-Time Compilation
Erlang
BEAM: Specification & Implementation
Project Goals

JIT:ing as it applies to BEAM
Profiling
Tracing
Generating and Calling Native Code
Future Work

LLVM’s Strengths and Weaknesses
Questions



Just-In-Time (JIT) Compilation as it Applies to
BEAM

Use light-weight profiling to detect when we are at a place
which is frequently executed.

Trace the flow of execution until we get back to the same
place.

Compile trace to native code.

NOTE: We are tracing the execution flow in the interpreter,
the granularity is finer than BEAM opcodes.

Profile Trace Generate Native Code Run Native



BEAMJIT: What is Needed?

Three basic execution modes

Profiling
Tracing
Native

Interpreter loop has to be modified to support mode
switching:

Turn on/off tracing.
Passing state to/from native code.

Native code generation: Need the semantics for each
instruction.



Profiling

First step in figuring out what to JIT-compile

Let Erlang compiler insert profile instructions at locations
which can be the head of a loop

Maintain a time stamp and counter for each location

Measure execution intensity by incrementing a counter if the
location was visited recently, reset otherwise

Trigger tracing when count is high enough

Blacklist locations which:

Never produce a successful trace.
Where we, when executing native code, leave the trace
without executing the loop at least once.



Outline

Background
Just-In-Time Compilation
Erlang
BEAM: Specification & Implementation
Project Goals

JIT:ing as it applies to BEAM
Profiling
Tracing
Generating and Calling Native Code
Future Work

LLVM’s Strengths and Weaknesses
Questions



Extracting the Semantics of the BEAM Opcodes

Use libclang to parse and simplify the interpreter source:

Use Erlang binding for libclang.

Flatten variable scopes.

Remove loops, replace by if + goto.

Make fall-troughs explicit.

Turn structured C into a spaghetti of Basic Blocks (BB), CFG
– Control Flow Graph.

Do liveness-analysis of variables.

bb_4090

bb_4097

bb_2488bb_4109

bb_4115 bb_4113 bb_4111

bb_4365

bb_4372

bb_3878

bb_3880

bb_3872

bb_4014

bb_4580

bb_4561

bb_4485

bb_4488bb_4413

bb_4420

i_bs_skip_bits2_fxrI

bb_4486

do_is_ne_exact_literal

bb_3900

bb_4500

bb_4481

bb_3764

bb_4401

i_bs_match_string_xfII

bb_4008

i_bs_get_float2_fxIsId

bb_4356 bb_4360 bb_4358

bb_4161

bb_4174

bb_4096

bb_4099

i_bs_skip_bits2_fryI

bb_4446 bb_4445

bb_3925

i_bs_get_binary2_frIsId

bb_4063 bb_4061

bb_4073

bb_4065

i_bs_get_utf8_rfd

bb_3911

bb_4067

bb_3898

bb_3894

bb_3896

bb_4130

bb_4138

bb_4320

bb_4327

bb_4521

bb_4517

bb_4126

bb_4557

bb_4140

bb_4143

i_bs_get_binary2_fxIsId

bb_4128

bb_4343

bb_4317

bb_3746

bb_3753bb_3752

bb_4075

bb_4077

bb_4454

bb_4390

bb_4362

bb_3851

bb_3854

bb_3852

bb_3860

bb_4477

bb_3745

bb_4540

bb_4448

bb_4460

bb_4345bb_4178

bb_4132

bb_3866

bb_3584

bb_3760

bb_3936 bb_4371

bb_4384

bb_4313

bb_4176

bb_4162

bb_4164

i_bs_get_integer_fIId

i_bs_skip_bits2_fxxI

bb_4525 bb_4526 bb_4406bb_4566

bb_4574

bb_4374

bb_3944 bb_4397

bb_4386

bb_4009

bb_4016bb_4015

bb_3884

bb_3883

is_function_fr

bb_4315

bb_4388

i_is_ne_exact_literal_yfc

bb_3788

bb_3794 bb_3792 bb_3790

bb_3950 bb_3784

bb_4329

bb_4326bb_3775

bb_3847

bb_3776

bb_3783

bb_3538

bb_4527

bb_3758

i_bs_start_match2_rfIId

bb_3919

bb_4076

bb_4155

bb_4084

bb_3762

bb_4311

bb_3921 bb_3923

bb_1636

i_bs_match_string_rfII

bb_4141

bb_4149

bb_4441

bb_4437

i_bs_get_float2_frIsId

bb_4568

bb_4339

bb_4341

bb_4493bb_4533

bb_4180

i_bs_get_utf8_xfd

i_bs_skip_bits2_frxI

bb_4405

i_bs_start_match2_yfIId i_bs_start_match2_xfIId

bb_4408

i_bs_skip_bits2_fxyI

bb_4565



Näıve Tracing

Use a new version of the interpreter, generated from the CFG.

Generate a tracing and non-tracing version of each opcode.

For each basic block we pass through, record basic block
identity and PC.

Abort trace if too long.

If we reach the profile instruction we started the trace from –
We have found a loop!



Näıve Profiling to Tracing Mode Switch

Direct
threading

0xCDAADEF0

0xCDAADEFF

0xCDAACAF8

0xCDAAD432

0xDEADBEEF

PC

x = x + 1;
...

0XCDAACAF8

Indirect threading
17

42

97

23

12

PC

x = x + 1;
...

0XCDAACAF8

95: 0xCBAADEF0

96: 0xCDAEDEFF

97: 0xCDAACAF8

98: 0xCDAAD432

99: 0xDEADBEEF

Profiling Opcodes

95: 0xCBBADEF0

96: 0xCBAEDEFF

97: 0xCBAACAF8

98: 0xCBAAD432

99: 0xDBADBEEF

Tracing Opcodes

record_trace_bb(4711, PC)
x = x + 1;
...

0XCBAACAF8

Have two implementations of each opcode.

Switch the table of opcodes.

Compiler has to assume that a mode switch can take place at
any block → performance suffers



Refined Tracing

Modify the interpreter loop as little as possible.

Have separate trace interpreter.

Limit entry to the interpreter at instruction boundaries.

Have separate cleanup-interpreter to continue execution to
the next instruction boundary.

Reuse cleanup-interpreter when returning from native mode.

Profiling Tracing Native Cleanup



Further Tracing Refinements

Ensure that we have a representative trace:

Follow along a previously created trace.

Allow multi-path traces.

Generate native code when the trace has not grown for N
successive iterations.

Enforce limit on total size of trace.



Trace Compression

Large CFGs slow down LLVM optimization and native code
generation significantly.

Solution: Compress traces to remove shared segments.

BB=0
ip=0x4567

BB=1
ip=0x4567

BB=2
ip=0x4567

BB=3
ip=0x4568

BB=3
ip=0x4568

BB=4
ip=0x4569

BB=4
ip=0x4569

BB=0
ip=0x4567

BB=1
ip=0x4567

BB=2
ip=0x4567

BB=3
ip=0x4568

BB=4
ip=0x4569



Outline

Background
Just-In-Time Compilation
Erlang
BEAM: Specification & Implementation
Project Goals

JIT:ing as it applies to BEAM
Profiling
Tracing
Generating and Calling Native Code
Future Work

LLVM’s Strengths and Weaknesses
Questions



Native-code Generation

Glue together LLVM-IR-fragments for the trace.

Guards are inserted to make sure we stay on the traced path.

Fragments are extracted from the CFG as C-source, compiled
to IR using clang (at build-time) and loaded during system
initialization.

Hand the resulting IR off to LLVM for the rest.

beam_emu.c CFG

fragments.c

jit_emu.c Trace

LLVM optimizer Native codeBitcode IR generator



Calling Native Code

Switching from interpreter to native code:

Use liveness information from the CFG.

Package native-code as a function where the arguments are
the live variables.

Switching from native code to interpreter:

The cleanup-interpreter is a set of functions, one for each BB,
which tail-recursively calls the next BB. Arguments are the
live variables.

Cleanup-interpreter packs up live variables in a structure
which the interpreter unpacks on return.



Performance Improvements

Run native-code generation in separate thread.

Erlang-aware constant propagation:

Eliminate loads from code (constant at compile time).
Will eliminate loading of immediates.
Will eliminate many of the guards.



Performance

Steady state:

Eliminates most of the instruction decode overhead.

Up to 50% reduction in runtime.

Well-behaved programs: around 25%.

Programs using cute tricks such as unrolling: up to 200%
increase in runtime.



Future Work

Full SMP support.

Box/unboxing-aware constant propagation.

Extend JIT support to fold in primitives.



Outline

Background
Just-In-Time Compilation
Erlang
BEAM: Specification & Implementation
Project Goals

JIT:ing as it applies to BEAM
Profiling
Tracing
Generating and Calling Native Code
Future Work

LLVM’s Strengths and Weaknesses
Questions



LLVM’s Strengths

Access to the C AST via libClang.

Quality of generated code.

The optimization framework.



LLVM’s Weaknesses

No thread-safety – Extra housekeeping to do things in the
correct context.

Compilation could be much faster.

Native code has to be packaged as C-function – Would really
like to have enough control to patch generated native code.

Clang/LLVM does bad job on the main interpreter:

Allocates the VM’s stack- and instruction-pointers on the
stack.
Inserts extra instruction sequence before indirect jumps (when
dispatching to next VM instruction), GCC appears to insert it
at the branch target and only if needed.

Costs us 15-20%



Outline

Background
Just-In-Time Compilation
Erlang
BEAM: Specification & Implementation
Project Goals

JIT:ing as it applies to BEAM
Profiling
Tracing
Generating and Calling Native Code
Future Work

LLVM’s Strengths and Weaknesses
Questions



Questions?


	Main Part
	Background
	Just-In-Time Compilation
	Erlang
	BEAM: Specification & Implementation
	Project Goals

	JIT:ing as it applies to BEAM
	Profiling
	Tracing
	Generating and Calling Native Code
	Future Work

	LLVM's Strengths and Weaknesses
	Questions


