lvan Baev

QUALCONVW

Outline

> Motivation

- Related work

> Register pressure background
° LLVM LICM

- LLVM GVN

- Performance results

o Future work: LLVM Inliner

° Summary

Motivation

- When we compared LTO -Ofast vs -Ofast performance we saw 10% degradation
In spec2000/crafty benchmark

- Analysis revealed the impact of the following LLVM passes
— Inliner, LICM, and GVN

- Extra spill code and additional execution time in Evaluate() and Swap()
> Increased register pressure

> This scenario is typical for other compilers too
- When enabling a new optimization, or increasing the optimization level

Related work

> Register pressure has been a known problem for compiler/performance engineers
- Mismatch between the infinite number of virtual registers and fixed number of physical registers

> Aot of work to handle register pressure (RP) at machine-level IR: register allocator,
scheduler, and related passes
— Rematerialization (Briggs, 1992)
— Fighting reqister pressure in GCC (Makarov, 2004)
- Prematerialization (Baev, Hank, Gross, 2006)
— Region-based register allocation (Baev, 2009)
— Register pressure-aware scheduling (Touati, 2001; Govindarajan, 2003)
- LLVM reqister pressure tracking and RP-aware scheduling (Trick, 2012)

Related work (cont.)

- Some work at higher-lever IR: LICM, PRE, and loop transformations
— Register pressure sensitive redundancy elimination (Gupta, Bodik, 1999)
— Register pressure guided unroll-and-jam (Ma, Carr, 2008)
— Model-based framework: an approach for profit-driven optimization (Zhao, Childers, Soffa, 2005)

— Inlining — most papers acknowledge the problem of register pressure but do not address it
directly (Zhao, Amaral, 2003; Chakrabarty, Liu, 2006)

- Handling register pressure at a single place in the compiler — e.g. in register
allocator or scheduler — is usually not enough

> This talk will focus on middle-end, target-independent optimizations

Virtual register pressure

o

At a given program point

— the number of overlapping live ranges at that point

For a basic block(BB)/loop/function

— the highest register pressure over all program points in the BB/loop/function

For a BB/loop (in this work)
— the number of liveins for the BB/loop

]

]

]

Integer RP, floating-point RP, predicate RP, etc.

]

It IS an approximation

— Sources of approximation: register promotion of memory, calls, register pairs, etc.
— Tradeoff between precision and compile-time, e.g. better precision requires data-flow analysis

Our approach

> Analyze a pass and its components w.r.t. register pressure
— Study the code, collect statistics

- Add a measure of register pressure to control the component(s) with a high
Impact

- Allow a component/pass to be invoked multiple times

> Include a comparison with the number of hardware registers of the
corresponding type for the target processor

Register pressure analysis of LLVM LICM pass

- Loop-level pass with three components
— Sinking code
— Hoisting code
— Promotion of memory locations

Register pressure analysis of LLVM LICM pass

- Loop-level pass with three components
— Sinking code — not likely to impact RP (# liveins for the loop)

Register pressure analysis of LLVM LICM pass

- Loop-level pass with three components
— Sinking code — not likely to substantially impact RP
— Hoisting code - may impact RP

° Instructions to be hoisted and the impact on RP for the loop

5528 = load 164* (@rank mask.l
5527 = load 164* getelementptr inbounds (%$struct.CHESS POSITION.86* @search, 132 0, 132 7)

Both instructions increase RP (# liveins) by 1

$tobooll418 = icmp ne 164 %Sandl417, O // assume %$andl417 is only used in this instruction

No change in RP

%andl41l7 = and 164 %518, %517 // assume %518 and %517 are only used in this instruction

Decrease RP by 1

Register pressure analysis of LLVM LICM pass

> Loop-level pass with three components
— Sinking code — not likely to impact RP (# liveins for the loop)
— Hoisting code - may impact RP
— Promotion of memory locations — not likely to substantially increase RP

y [/l removed a, but added y to liveins

if

Implementation of LICM RP heuristic

int MaxLIs // Max number of new liveins allowed for hoisting for the loop

int NumLIs // Current number of new liveins for the loop

estimateRegisterPressure (Loop *L) {
unsigned MaxLivelIns = TTI->getNumberOfRegisters (false)

Set Livelns

Iterate over all BBs in L
Iterate over all instructions in BB
Iterate over source operands in Instruction
if (Operand is of integer or pointer type)
if (OperandValue is defined outside L) || (OperandValue is argument or global wvariable))

LivelIns.insert (OperandValue)

NumLIs = 0

if (LivelIns.cardinality >= MaxLivelns)

MaxLIs = 0
else
MaxLIs = MaxLivelIns - LivelIns.cardinality

}

// also, provision for user-defined MaxLiveIns (not shown)

Implementation of LICM RP heuristic (cont.)

bool doesReducePressure (Instruction &I, Loop *L, int &NumLiveInReduce) {

NumLiveInReduce = -1 // start with -1 due to hoisting I’s destination operand

Iterate over all source operands of I
if (Operand is of integer or pointer type)
if ((OperandValue is defined outside L) || (OperandValue is argument or global variable))

if (OperandValue has one use) NumLiveInReduce++

1f (NumLiveInReduce >= 1) return true

else return false

hoist (Instruction &I) {
bool ReducePressure = doesReducePressure (I, L, NumLiveInReduced)

if (NumLIs >= MaxLIs) && !ReducePressure) return // skip hoisting

hoist I

NumLIs -= NumLiveInReduced // keep track of loop’s liveins

Register pressure analysis of LLVM GVN pass

> Function-level pass with two major components

> GVN part

— processBlock() -> processinstruction()
- Simplifylnstruction
— processLoad() -> processNonLocallLoad
— processBranch
— processSwitch
— ProcessOtherinstruction

> PRE part
- Simple local PRE on diamond control-flow patterns

Implementation GVN RP heuristic

> GVN mostly operates on BB basis

- Estimate RP for the basic block enclosing the load
— estimateRegisterPressure(BB)

- Estimate RP for the loop enclosing the load
- estimateRegisterPressure(Loop) // similar to the version in LICM

> Using loop-based RP performs better

> If (estimateRegisterPressure(Loop) >= TTI->getNumberOfRegisters(false))
skip processing/promoting this load

Performance evaluation of RP heuristics

1.7 0.5 1.6

-0.8 2.1 1.5
2.5 1.4 4.3
0.4 1.6 1.9
9.1 3.8 5.7
3.1 3.1 3.0
2.2 1.6 2.4

> With QC LLVM compiler - on Nexus4 Android devices, ARMv7, thumb mode

> Good improvements also in ARM mode and for Hexagon processors, for both
-Ofast and LTO optimization levels

Controlling RP In Inliner (future work)

- Calculate maxRP for each function traversing the call graph bottom-up
— At each call site add the callee’s RP to the current RP of the caller

- Add RP at call site to the goodness factor (ranking) of the call site
- In the denominator - as a cost
— Add extra cost if RP exceeds the number of hardware registers for the target

- Likely no need to update maxRP for a function after inlining any of call sites
within the function

Summary

o

The register pressure problem will likely to stay

— Newer generation processors feature more registers, however compiler engineers quickly
make the extra registers insufficient

We presented a general approach and specific heuristics for controlling register

pressure in LLVM LICM, GVN, and Inliner passes

- Will upstream RP patches if there is interest

— Unroller is another candidate for RP tuning in the middle-end

o

o

Compiler optimizations should be designed to take into account register pressure
— Simple heuristics are good in many cases

As a community, continue improving RP in machine-level passes
— Compute and report the sum of weighted spills when profile information is available

o

Acknowledgements

Zhaoshi Zheng, Balaram Makam, Yin Ma, Taylor Simpson, QuIC

Any questions?

