
PAGE 1 Open Source | Open Possibilities

MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

Global Instruction
Scheduling for LLVM

Sergei Larin, Qualcomm Innovation Center

Aditya Kumar, Qualcomm Innovation Center

What are we trying to achieve?

• Restart the discussion on how can we implement
global instruction scheduling in LLVM in the most
effective way

• How to best utilize the opportunities it presents
– Global scope usability can go beyond instruction scheduling
– …and beyond statically scheduled targets

• See what (if anything) we might want to change in
LLVM infrastructure to do it

2

Conceptual scheduling steps

IR representation

Instruction Selection

DAG construction/optimization

Pre-RA scheduling

Register Allocation

Post-RA scheduling

Bundling/Bundling finalization

Machine Instruction emission

Theoretical
time accurate
domain

3

Statically Scheduled
Targets (SST)

Distributed Instruction Scheduling
• Pre-RA Instruction Scheduling

– Most flexible (least constrained)
– Has to anticipate register pressure
– Uses DFA to model timing (which is discarded immediately)
– Currently done on Basic Block (BB) scope

• Post-RA scheduling is much less effective than Pre-RA
scheduling
– Mainly due to all the new false dependencies introduced due to the

constrained physical register set
– …and mainly helps with scheduling spill/fill code

• Bundling is critical for SST performance and currently done by
those back ends that utilize it rather late
– …leaving plenty of performance unexplored…

• Anecdotal evidence suggests that about 10-15% improvement is
possible with global schedule cleanup pass for some cases

• Average (geomean) SPEC 2K Int speedup 1.4%

4

Global Instruction Scheduling
• General premise – allow instruction scheduling beyond Basic

Block boundaries
– Scheduling region == static scheduling scope

• Benefits all targets and not only for scheduling

– Trace, Superblock, Hyperblock, Treegion

– Major step is scheduling region formation

• For best results should span as much scope as possible with as little code
duplication as possible

• In general case requires complex if-conversion and speculation support

• Best performed on the least constrained state of DAG
– Probably right before RA

– Needs precise profile information

– Liveness needs to handle predication properly

5

Global Instruction Scheduling

• Cyclic/Acyclic cases are handled rather differently
– Cyclic scheduling is currently performed rather “early”

• When bundling is not yet available

– If cyclic scheduling has been performed on a loop (SW pipelining)
acyclic scheduler might need to

• Leave it in the “tuned” form

• Beware of alternative reg allocation strategy for that region

• Deal with global live ranges around that loop

• Assign timing (bundling) in accord with the original scheduling intent

• Autovectorization can add additional constrains
– Outside the scope of this presentation

6

Global Instruction Scheduling
• Performing global instruction movement on actual machine instructions

and allocated physical registers offers several benefits
– It is unlikely to make performance worst, but it can make it significantly better

• Once critical path is established we are free to utilize “holes” around it and shorten
it when possible

– It does not have to worry about increase in register pressure

– It can perform very target specific optimizations
• Like custom peephole opt and peculiar code layout or compaction

• Power consumption related options etc.

• You have nothing to lose but your chains 

• Cons include
– Restricted scheduling region formation

– Limited flexibility in code motion

– Complex (if any) register scavenging

– Multi-way branching

7

A case study - Hexagon Global
Scheduler

• Global Scheduling done after packetization (bundling)
• Major goal is to fill in the gaps in the bundles by “pulling

up” instructions from successor basic blocks
– …without lengthening the critical path

• Uses the DFA based Hexagon VLIW packetizer
– To manage resource constraints in bundles

• Utilizes a specialized post-RA predicate-aware liveness
analysis pass

• Performs speculative and predicative global scheduling of
instructions in a superblock

• 1.4% improvement on SPEC 2K Int

8

R4 = load.word (R2+#4)

{

 R4 = load.u_half (R4+#2)

 if (compare.equal (R4.new, R3)) jump BB#3

}

{

 R0 = R2

 if (p0) jump BB#10

}

{

R2 = load.word (R2)

jump BB#0

}

{

 R7 = R2

 p0 = compare.equal (R2, #0)

 if (p0.new) jump BB#10

}

A case study - Hexagon Global Scheduler
After Packetizer (4 wide issue) Step 1 (pull from BB3 to BB1)

BB 0

BB 1
BB 10

BB 2 BB 3

{

 R7 = R2

 R4 = load.word (R2+#4)

 R2 = load.word (R2)

}

{

 R4 = load.u_half (R4+#2)

 if (compare.equal (R4.new, R3)) jump BB#3

}

{

R0 = R7

if (p0) jump BB#10

}

jump BB#0

{

 R7 = R2

 p0 = compare.equal (R2, #0)

 if (p0.new) jump BB#10

}

BB 0

BB 1

BB 10

BB 2 BB 3

9

R2 dead

BB 10 BB 10 BB 11 BB 11

R2 dead

R4 = load.word (R2+#4)

R2 = load.word (R2)

{

 R4 = load.u_half (R4+#2)

 if (compare.equal (R4.new, R3)) jump BB#3

}

{

R0 = R7

if (p0) jump BB#10

}

jump BB#0

{

 R7 = R2

 p0 = compare.equal (R2, #0)

 if (p0.new) jump BB#10

}

A case study - Hexagon Global Scheduler
Step 2 (pull from BB1 to BB0) Step 3 (pull from BB1 to BB0)

BB 0

BB 1
BB 10

BB 2 BB 3

R2 = load.word (R2)

{

 R4 = load.u_half (R4+#2)

 if (compare.equal (R4.new, R3)) jump BB#3

}

jump BB#0

{

 R7 = R2

 p0 = compare.equal (R2, #0)

 if (!p0.new) r4 = load.word (R2+#4)

 if (p0.new) jump BB#10

}

BB 0

BB 1

BB 10

BB 2 BB 3

10

{

R0 = R7

if (p0) jump BB#10

}

BB 10 BB 10 BB 11 BB 11

R2 = load.word (R2)

{

 R4 = load.u_half (R4+#2)

 if (compare.equal (R4.new, R3)) jump BB#0

}

{

 R7 = R2

 p0 = compare.equal (R2, #0)

 if (!p0.new) R4 = load.word (R2+#4)

 if (p0.new) jump BB#10

}

A case study - Hexagon Global Scheduler
Step 4 (fold BB3) Step 5 (fold BB2)

BB 0

BB 1
BB 10

BB 2

{

 R2 = load.word (R2)

 R0 = R7

}

{

 R4 = load.u_half (R4+#2)

 if (compare.equal (R4.new, R3)) jump BB#0

 if (p0) jump BB#10

}

{

 R7 = R2

 p0 = compare.equal (R2, #0)

 if (!p0.new) R4 = load.word (R2+#4)

 if (p0.new) jump BB#10

}

BB 0

BB 1

BB 10

R0 dead

Three-way branch!

11

{

R0 = R7

if (p0) jump BB#10

}

BB 10

BB 10

BB 11

BB 11

A case study - Hexagon Global
Scheduler

• A robust implementation was achieved only after
focusing on a limited set of schedule

• The Machine verifier pass was of great help
– after tailoring it for the Hexagon backend

• A separate post-RA liveness analysis pass (which
understands predication), was required

• We could have simpler implementation and possibly,
better results if global scheduling would be done
conjointly with bundling

12

Open questions for Global scheduling
in LLVM context

• Proposed region formation implementation in LLVM
– Possibly provided as analysis pass

• To be used for extended if conversion, global peephole and global scheduling

• Provides liveness info at region boundaries

– Can we have totally autonomous region formation pass?
• Most likely yes

– Do we need any IR support for region formation?
• runOnRegion(Region *R)

• Might be a compile time issue

• Can we backtrack a scheduling decision during RA? (or some other pass)
– Reverse if-conversion

• Do we need full liveness support for predicated data flow?
– Virtual predicate regs

• Can we unbundle an earlier bundle deterministically?
– Register swap for instance

– IR support for ambiguous cases?

13

Indeterminism in bundle dispersing
• There has been a lot of discussion about serialization indeterminism

– Order indeterminism

• { a = 0; b = a }

• In general case an anti dependency restoration

• Can possibly be a problem to an exposed pipeline machine

– Swap

• { a = b; b = a }  t = a; a = b; b = t;  a = a^b; b = a^b; a = a^b;

• Might require a temp storage

• XOR copy

– Aliasing indeterminism (memory swap)

• { A[i] = i; i = B[i] } what if A ?= B

• Should not be a problem for targets where “left-to-right” semantics are assumed

– Platform specific side effects

• { p0 = cmp.eq(a,b); p0 = cmp.eq(a,c) }

• Fortunately it should be a rare event and we should optimize for the
common case

14

15

Open questions for Global scheduling
in LLVM context

• Accurate global region formation requires precise
profile info

• Appropriate hooks in the register allocator for
handling register allocation on bundles with
predicates

• Global scheduling conjoint with register allocation?

16

Near term solutions

• Predicate aware liveness

• Bundle-aware passes

• Incremental improvement to the register coalescer
algorithm

• Load/store speculation support

• Instruction selection functionality can be made
timing sensitive

– Macro-fusion support (compare+jmp)

17

Mid term

• Better API for live intervals
– Including target specific hooks

• Access to target-specific peephole opts during
scheduling

• Expression height reduction (not actually in the
scheduler)

• Target-specific folding/unfolding (e.g. postinc
load formation)

Long range perspective

• Finalize general scheduling framework

• Back-tracking scheduling related decisions

• Global DAG construction determinism

• Pre-RA full bundle formation

18

19

©2013-2014 Qualcomm Incorporated and/or its subsidiaries.

Qualcomm is a trademark of Qualcomm Incorporated, registered in the United States and other
countries. Other products and brand names may be trademarks or registered trademarks of their
respective owners.

References to “Qualcomm” may mean Qualcomm Incorporated, or subsidiaries or business units within
the Qualcomm corporate structure, as applicable.

Qualcomm Incorporated includes Qualcomm’s licensing business, QTL, and the vast majority of its
patent portfolio. Qualcomm Technologies, Inc., a wholly-owned subsidiary of Qualcomm Incorporated,
operates, along with its subsidiaries, substantially all of Qualcomm’s engineering, research and
development functions, and substantially all of its product and services businesses, including its
semiconductor business, QCT.

For more information on Qualcomm, visit us at:
www.qualcomm.com & www.qualcomm.com/blog

Thank you
Follow us on:

