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What are we trying to achieve? 

• Restart the discussion on how can we implement 
global instruction scheduling in LLVM in the most 
effective way 

• How to best utilize the opportunities it presents 
– Global scope usability can go beyond instruction scheduling 
– …and beyond statically scheduled targets 

• See what (if anything) we might want to change in 
LLVM infrastructure to do it 
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Conceptual scheduling steps 

IR representation 

Instruction Selection 

DAG construction/optimization 

Pre-RA scheduling 

Register Allocation 

Post-RA scheduling 

Bundling/Bundling finalization 

Machine Instruction emission 

Theoretical 
time accurate 
domain 
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Statically Scheduled 
Targets (SST) 



Distributed Instruction Scheduling 
• Pre-RA Instruction Scheduling 

– Most flexible (least constrained) 
– Has to anticipate register pressure 
– Uses DFA to model timing (which is discarded immediately) 
– Currently done on Basic Block (BB) scope 

• Post-RA scheduling is much less effective than Pre-RA 
scheduling 
– Mainly due to all the new false dependencies introduced due to the  

constrained physical register set 
– …and mainly helps with scheduling spill/fill code 

• Bundling is critical for SST performance and currently done by 
those back ends that utilize it rather late 
– …leaving plenty of performance unexplored… 

• Anecdotal evidence suggests that about 10-15% improvement is 
possible with global schedule cleanup pass for some cases 

• Average (geomean) SPEC 2K Int speedup 1.4% 
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Global Instruction Scheduling 
• General premise – allow instruction scheduling beyond Basic 

Block boundaries 
– Scheduling region == static scheduling scope 

• Benefits all targets and not only for scheduling 

– Trace, Superblock, Hyperblock, Treegion 

– Major step is scheduling region formation 

• For best results should span as much scope as possible with as little code 
duplication as possible 

• In general case requires complex if-conversion and speculation support 

• Best performed on the least constrained state of DAG 
– Probably right before RA 

– Needs precise profile information 

– Liveness needs to handle predication properly 
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Global Instruction Scheduling 

• Cyclic/Acyclic cases are handled rather differently 
– Cyclic scheduling is currently performed rather “early” 

• When bundling is not yet available 

– If cyclic scheduling has been performed on a loop (SW pipelining) 
acyclic scheduler might need to 

• Leave it in the “tuned” form 

• Beware of alternative reg allocation strategy for that region 

• Deal with global live ranges around that loop 

• Assign timing (bundling) in accord with the original scheduling intent 

• Autovectorization can add additional constrains 
– Outside the scope of this presentation 
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Global Instruction Scheduling 
• Performing global instruction movement on actual machine instructions 

and allocated physical registers offers several benefits 
– It is unlikely to make performance worst, but it can make it significantly better 

• Once critical path is established we are free to utilize “holes” around it and shorten 
it when possible 

– It does not have to worry about increase in register pressure 

– It can perform very target specific optimizations 
• Like custom peephole opt and peculiar code layout or compaction 

• Power consumption related options etc. 

• You have nothing to lose but your chains  

• Cons include 
– Restricted scheduling region formation 

– Limited flexibility in code motion 

– Complex (if any) register scavenging 

– Multi-way branching 
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A case study - Hexagon Global 
Scheduler 

• Global Scheduling done after packetization (bundling) 
• Major goal is to fill in the gaps in the bundles by “pulling 

up” instructions from successor basic blocks 
– …without lengthening the critical path 

• Uses the DFA based Hexagon VLIW packetizer 
– To manage resource constraints in bundles 

• Utilizes a specialized post-RA predicate-aware liveness 
analysis pass 

• Performs speculative and predicative global scheduling of 
instructions in a superblock 

• 1.4% improvement on SPEC 2K Int 
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R4 = load.word (R2+#4) 

{ 

  R4 = load.u_half (R4+#2) 

  if (compare.equal (R4.new, R3)) jump BB#3 

} 

{ 

 R0 = R2 

 if (p0) jump BB#10 

} 

 

{ 

R2 = load.word (R2) 

jump BB#0 

} 

{ 

  R7 = R2 

  p0 = compare.equal (R2, #0) 

  if (p0.new) jump BB#10 

} 

 

A case study - Hexagon Global Scheduler 
After Packetizer (4 wide issue) Step 1 (pull from BB3  to BB1) 

BB 0 

BB 1 
BB 10 

BB 2 BB 3 

{ 

  R7 = R2 

  R4 = load.word (R2+#4) 

  R2 = load.word (R2) 

} 

{ 

  R4 = load.u_half (R4+#2) 

  if (compare.equal (R4.new, R3))  jump BB#3 

} 

{ 

R0 = R7 

if (p0) jump BB#10 

} 

jump BB#0 

{ 

  R7 = R2 

  p0 = compare.equal (R2, #0) 

  if (p0.new) jump BB#10 

} 

 

BB 0 

BB 1 

BB 10 

BB 2 BB 3 
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R2 dead 

BB 10 BB 10 BB 11 BB 11 

R2 dead 



R4 = load.word (R2+#4) 

R2 = load.word (R2) 

{ 

  R4 = load.u_half (R4+#2) 

  if (compare.equal (R4.new, R3))  jump BB#3 

} 

{ 

R0 = R7 

if (p0) jump BB#10 

} 

 

jump BB#0 

{ 

  R7 = R2 

  p0 = compare.equal (R2, #0) 

  if (p0.new) jump BB#10 

} 

 

A case study - Hexagon Global Scheduler 
Step 2 (pull from BB1  to BB0) Step 3 (pull from BB1  to BB0) 

BB 0 

BB 1 
BB 10 

BB 2 BB 3 

R2 = load.word (R2) 

{ 

  R4 = load.u_half (R4+#2) 

  if (compare.equal (R4.new, R3))  jump BB#3 

} 

jump BB#0 

{ 

  R7 = R2 

  p0 = compare.equal (R2, #0) 

  if (!p0.new) r4 = load.word (R2+#4) 

  if (p0.new) jump BB#10 

} 

 

BB 0 

BB 1 

BB 10 

BB 2 BB 3 
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{ 

R0 = R7 

if (p0) jump BB#10 

} 

 

BB 10 BB 10 BB 11 BB 11 



R2 = load.word (R2) 

{ 

  R4 = load.u_half (R4+#2) 

  if (compare.equal (R4.new, R3))  jump BB#0 

} 

{ 

  R7 = R2 

  p0 = compare.equal (R2, #0) 

  if (!p0.new) R4 = load.word (R2+#4) 

  if (p0.new) jump BB#10 

} 

 

A case study - Hexagon Global Scheduler 
Step 4 (fold BB3) Step 5 (fold BB2) 

BB 0 

BB 1 
BB 10 

BB 2 

{ 

  R2 = load.word (R2) 

  R0 = R7 

} 

{ 

  R4 = load.u_half (R4+#2) 

  if (compare.equal (R4.new, R3))  jump BB#0 

  if (p0) jump BB#10 

} 

{ 

  R7 = R2 

  p0 = compare.equal (R2, #0) 

  if (!p0.new) R4 = load.word (R2+#4) 

  if (p0.new) jump BB#10 

} 

 

BB 0 

BB 1 

BB 10 

R0 dead 

Three-way branch! 
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{ 

R0 = R7 

if (p0) jump BB#10 

} 

 

BB 10 

BB 10 

BB 11 

BB 11 



A case study - Hexagon Global 
Scheduler 

• A robust implementation was achieved only after 
focusing on a limited set of schedule 

• The Machine verifier pass was of great help 
– after tailoring it for the Hexagon backend 

• A separate post-RA liveness analysis pass (which 
understands predication), was required 

• We could have simpler implementation and possibly, 
better results if global scheduling would be done 
conjointly with bundling 
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Open questions for Global scheduling 
in LLVM context 

• Proposed region formation implementation in LLVM 
– Possibly provided as analysis pass 

• To be used for extended if conversion, global peephole and global scheduling 

• Provides liveness info at region boundaries 

– Can we have totally autonomous region formation pass? 
• Most likely yes 

– Do we need any IR support for region formation? 
• runOnRegion(Region *R) 

• Might be a compile time issue 

• Can we backtrack a scheduling decision during RA? (or some other pass) 
– Reverse if-conversion 

• Do we need full liveness support for predicated data flow? 
– Virtual predicate regs 

• Can we unbundle an earlier bundle deterministically? 
– Register swap for instance 

– IR support for ambiguous cases? 
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Indeterminism in bundle dispersing 
• There has been a lot of discussion about serialization indeterminism 

– Order indeterminism 

• { a = 0; b = a }  

• In general case an anti dependency restoration 

• Can possibly be a problem to an exposed pipeline machine 

– Swap 

• { a = b; b = a }    t = a; a = b; b = t;  a = a^b; b = a^b; a = a^b; 

• Might require a temp storage 

• XOR copy 

– Aliasing indeterminism (memory swap) 

• { A[i] = i; i = B[i] }  what if A ?= B 

• Should not be a problem for targets where “left-to-right” semantics are assumed 

– Platform specific side effects 

• { p0 = cmp.eq(a,b); p0 = cmp.eq(a,c) }  

• Fortunately it should be a rare event and we should optimize for the 
common case 
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Open questions for Global scheduling 
in LLVM context 

• Accurate global region formation requires precise 
profile info 

• Appropriate hooks in the register allocator for 
handling register allocation on bundles with 
predicates 

• Global scheduling conjoint with register allocation? 
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Near term solutions 

• Predicate aware liveness 

• Bundle-aware passes 

• Incremental improvement to the register coalescer 
algorithm 

• Load/store speculation support 

• Instruction selection functionality can be made 
timing sensitive 

– Macro-fusion support (compare+jmp) 



17 

Mid term  

• Better API for live intervals 
– Including target specific hooks 

• Access to target-specific peephole opts during 
scheduling 

• Expression height reduction (not actually in the 
scheduler) 

• Target-specific folding/unfolding (e.g. postinc 
load formation) 



Long range perspective 

• Finalize general scheduling framework 

• Back-tracking scheduling related decisions 

• Global DAG construction determinism 

• Pre-RA full bundle formation 
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