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Enabling compiler optimizations

AVX-512VL: Vector Length Orthogonality

Vector Evolution

If-Conversion with memory accesses

With AVX-512 we can

AVX-512
VL,BW,DQ

Apply AVX-512F instructions to float A[N], B[N], C[N]:;
128b (%XMM) and 256b (%YMM) registers

generate this smart code!

Masking instructions semantics

for(i=0' 1<16; i++) { Zero-masking:

AVX-512F ’ ’

- (. AVX-512F (starting with Xeon Phi) h if (B[i] !=0) { VCMPNEQPS k1, zmm0, B B e
|| “ « VADDPD (%rcx), %zmm2, %zmm3 Ali] = Ali] * BIi]; VMOVUPS zmme {k1}{z}, A R

}

VMULPS zmm1  {k1}, zmm2, B
dest; & mask;==1 ? srcl; * src2;: dest;

* AVX-512{FVL} (starting with Skylake Xeon)
 VADDPD (%rcx), %ymm2, %ymm3
\  VADDPD (%rcx), %xmm2, %xmm3 /

VMULPS zmm?1 {k1}, zmmZ2, B
VMOVUPS A{k1}, zmm’1 \
Currently, this loop can’t be vectorized in LLVM IR:
Potential LLVM IR extended with special intrinsics for masking

LV: Found a loop: for.body
LV: Can't if-convert the loop.

LV: Not vectorizing: Cannot prove legality.

%a= call <16 x float> @llvm.masked.load (<16 x float>* %a.ptr, <16 x i1> %mask, <16 x float> zeroinitializer)
[ AVX-512F packed instructions work on double- and words } %mul= call <16 x float> @Illvm.masked.fmul (<16 x float> %a, %b, <16 x i1> %mask, <16 x float> %old_mul)
: PTTITTTIIILILT call void @llvm.masked.store(<16 x float> %$mul, <16 x float>* %a.ptr, <16 x i1> %mask)
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Flops/Cycle

AVX-512BW: Byte & word support

AVX-512 Features

Vectorization of Peeled Loops

 Embedded rounding
* 512b-wide control
vectors(%ZMMO0-31)  Compressed
* Masked instructions, displacement
64b-mask registers * Embedded suppression of

[ AVX-512BW packed instructions work on byte and WoOrds }

IlllllllllllIIIIIIIIIIIIIIIIIE for (.|=O; | .< N" +..|_|) {
IIIIIIIIIIIIIIIIIIIIIIIIIIIII. C[I] - A[I] + B[I];

[ AVX-512BW also introduced 32b and 64b mask instructions } }

[Perfect for handling graphics m

AVX-512DQ: New HPC instructions *

// Vectorized

VMOVUPS ZMM1, ZERO_VEC
VADDPD ZMM1, ZMM1, A[0] //0..7
VADDPD ZMM1, ZMM1, B[O]
VMOVUPS C[0], ZMM1

float A[N], B[N], C[N];

(%K0-7) all exceptions
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// Peeled part

// Clone of loop body but with masks
KMOVW K1, MASK // Here, MASK is N % VF
VMOVUPS ZMM1, ZERO_VEC

VADDPD ZMM1 {k1}, ZMM1, A[32] // 32..36
VADDPD ZMM1 {k1}, ZMM1, B[32]

i=0;
V=N-(N%VF); // VFis # of elements in vector
// Vector part
for(;i<V;i+=VF){

// vectorized!

Cli:i+VF-1:1] = Ali:i+VF-1:1] + B[i:i+VF-1:1];

Extended Tuple

AVX-512 in Clang/LLVM T INT64 a”thTetlc }// ealed oo VMOVUPS C[32] {k1}, ZMM1
32x8, 64x2, 32x2 >uppor // Not vectorized!

Total: 651 instructions, 4000+ intrinsics for (1< N; ++i) Cli] = Al + B[il;

30% of these instructions implemented Int64 <~ FP Byte support for

Encodings, lowering and intrinsics covered with tests conversions mask instructions | ) T ~N
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