Intel® AVX-512 architecture evolution and support in Clang/LLVM

Robert.Khasanov

Zinovy.Y.Nis @intel.com

2014 LLVM Developers' Meeting, Oct 28-29

Enabling compiler optimizations

AVX-512VL: Vector Length Orthogonality

Vector Evolution

If-Conversion with memory accesses

With AVX-512 we can

AVX-512
VL,BW,DQ

Apply AVX-512F instructions to float A[N], B[N], C[N]:;
128b (%XMM) and 256b (%YMM) registers

generate this smart code!

Masking instructions semantics

for(i=0' 1<16; i++) { Zero-masking:

AVX-512F ’ ’

- (. AVX-512F (starting with Xeon Phi) h if (B[i] !=0) { VCMPNEQPS k1, zmm0, B B e
|| “ « VADDPD (%rcx), %zmm2, %zmm3 Ali] = Ali] * BIi]; VMOVUPS zmme {k1}{z}, A R

}

VMULPS zmm1 {k1}, zmm2, B
dest; & mask;==1 ? srcl; * src2;: dest;

* AVX-512{FVL} (starting with Skylake Xeon)
 VADDPD (%rcx), %ymm2, %ymm3
\ VADDPD (%rcx), %xmm2, %xmm3 /

VMULPS zmm?1 {k1}, zmmZ2, B
VMOVUPS A{k1}, zmm’1 \
Currently, this loop can’t be vectorized in LLVM IR:
Potential LLVM IR extended with special intrinsics for masking

LV: Found a loop: for.body
LV: Can't if-convert the loop.

LV: Not vectorizing: Cannot prove legality.

%a= call <16 x float> @llvm.masked.load (<16 x float>* %a.ptr, <16 x i1> %mask, <16 x float> zeroinitializer)
[AVX-512F packed instructions work on double- and words } %mul= call <16 x float> @Illvm.masked.fmul (<16 x float> %a, %b, <16 x i1> %mask, <16 x float> %old_mul)
: PTTITTTIIILILT call void @llvm.masked.store(<16 x float> %$mul, <16 x float>* %a.ptr, <16 x i1> %mask)

d15 d14 .

Xeon Phi

>56h 512b
" AVX-512

64 SP /32 DP

Flops/Cycle

AVX-512BW: Byte & word support

AVX-512 Features

Vectorization of Peeled Loops

 Embedded rounding
* 512b-wide control
vectors(%ZMMO0-31) Compressed
* Masked instructions, displacement
64b-mask registers * Embedded suppression of

[AVX-512BW packed instructions work on byte and WoOrds }

IlllllllllllIIIIIIIIIIIIIIIIIE for (.|=O; | .< N" +..|_|) {
IIIIIIIIIIIIIIIIIIIIIIIIIIIII. C[I] - A[I] + B[I];

[AVX-512BW also introduced 32b and 64b mask instructions } }

[Perfect for handling graphics m

AVX-512DQ: New HPC instructions *

// Vectorized

VMOVUPS ZMM1, ZERO_VEC
VADDPD ZMM1, ZMM1, A[0] //0..7
VADDPD ZMM1, ZMM1, B[O]
VMOVUPS C[0], ZMM1

float A[N], B[N], C[N];

(%K0-7) all exceptions

* Gathers/Scatters ~
° Permutations Intel® Architecture

* Embedded broadcast '"Strucu?" Set
Extensions

Programming
Reference
J

// Peeled part

// Clone of loop body but with masks
KMOVW K1, MASK // Here, MASK is N % VF
VMOVUPS ZMM1, ZERO_VEC

VADDPD ZMM1 {k1}, ZMM1, A[32] // 32..36
VADDPD ZMM1 {k1}, ZMM1, B[32]

i=0;
V=N-(N%VF); // VFis # of elements in vector
// Vector part
for(;i<V;i+=VF){

// vectorized!

Cli:i+VF-1:1] = Ali:i+VF-1:1] + B[i:i+VF-1:1];

Extended Tuple

AVX-512 in Clang/LLVM T INT64 a”thTetlc }// ealed oo VMOVUPS C[32] {k1}, ZMM1
32x8, 64x2, 32x2 >uppor // Not vectorized!

Total: 651 instructions, 4000+ intrinsics for (1< N; ++i) Cli] = Al + B[il;

30% of these instructions implemented Int64 <~ FP Byte support for

Encodings, lowering and intrinsics covered with tests conversions mask instructions |) T ~N

Elena Demikhovsky’s Irtil Yukhi
100+ patches, 9000+ LOCs 1o AVXS1s Intel® Advanced Vector
Work in progress! Transcendental Extensions 2015/16
prog Expanded mask Architect /
package) , More Samples rchitecture Support in GNU Compiler
Available in trunk since July 2014 ! functionality : review poster Collection
enhancements :
clang -march=knl... clang -march=skx ... K @ 2013 LLVM DEVMtgj = @ GNU Tools Cauldron 2014 j

Legal Disclaimer

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION
INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to
vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. Copyright © 2014, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel logo are
*Other names and brands trademarks of Intel Corporation in the U.S. and other countries. Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the
may be claimed as the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the
property of others applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.

