
Practical Fully Relocating Garbage
Collection in LLVM

Philip Reames, Sanjoy Das

Azul Systems

Oct 28, 2014

This is a talk about how LLVM can better support
garbage collection.

It is not about how write an LLVM based compiler
for a garbage collected language.

About Azul

We have one of the most advanced production
grade garbage collectors in the world.

If you’re curious:

I The Pauseless GC Algorithm. VEE 2005

I C4: The Continuously Concurrent Compacting Collector.
ISMM 2011

https://www.usenix.org/legacy/events/vee05/full_papers/p46-click.pdf
http://www.azulsystems.com/sites/default/files/images/c4_paper_acm.pdf
http://www.azulsystems.com/sites/default/files/images/c4_paper_acm.pdf

This presentation describes advanced development work at
Azul Systems and is for informational purposes only. Any
information presented here does not represent a commitment
by Azul Systems to deliver any such material, code, or
functionality in current or future Azul products.

A GC Overview

Late Insertion

Statepoints

Garbage Collection: 101

I Objects considered live if reachable

I Roots include globals, locals, & expression
temporaries

I “Some” collectors move objects

Compiler Cooperation Needed!

The challenges:

I Identifying roots for liveness

I Updating heap references for moved objects

I Ensuring application can make timely progress

I Intercepting (some) loads and stores

Parseable thread stacks

I thread stacks are “parseable” when the GC
knows where all the references are

I stacks are usually parsed using a stack map
generated by the compiler

Introducing safepoints

How to give the GC a parseable thread stack?

I keeping stacks parseable at all times is too
expensive

I make stacks parseable at points in thread’s
instruction stream called safepoints and ...

I ... make a thread be at a safepoint when
needed

Safepoints and parseability

A thread at a safepoint

I the youngest frame is in a parseable state

I older frames, now frozen at a callsite, are
parseable

Safepoints and polling

Usually

I GC requests a safepoint

I threads periodically poll for a pending request

I and, if needed, come to a safepoint in a
“reasonable” amount of time

Where might you poll?

“reasonable” is a policy choice. Some typical places
to poll:

I method entries or exits

I loop backedges

Safepoint polls can inhibit optimization

From the compiler’s perspective

Two main concepts:

I parseable call sites

I parseable safepoint polls

From the compiler’s perspective

Objects relocations become visible when a safepoint
is taken. The compiler must assume relocation can
happen during any parseable call or safepoint poll.

A GC Overview

Late Insertion

Statepoints

Assume for the moment, we can make all that work.

What effect does this have on the optimizer?

We’ll come back to the how in a bit..

Example

void foo(int* arr , int len) {

int* p = arr+len;

while(p != arr) {

p--;

*p = 0;

}

}

This loop is vectorizable.

Unfortunately, not after safepoint poll insertion...

Early Safepoint Insertion

void foo(int* GCPTR arr , int len) {

int* GCPTR p = arr+len;

while(p != arr) {

p--;

*p = 0;

... safepoint poll site ...

}

}

What does that poll site look like to the optimizer?

Early Safepoint Insertion

void foo(int* GCPTR arr , int len) {

int* GCPTR p = arr+len;

while(p != arr) {

p--;

*p = 0;

(p, arr) = safepoint(p, arr);
}

}

p and arr are unrelated to p and arr. The loop is
no longer vectorizable.

How to resolve this?

I Option 1 - Make the optimizer smarter
I Adds complexity to the optimizer
I Long tail of missed optimizations
I Or, worse, subtle GC related miscompiles

I Option 2 - Insert poll sites after optimization

Safepoint polls prevent optimizations by design

How to resolve this?

I Option 1 - Make the optimizer smarter
I Adds complexity to the optimizer
I Long tail of missed optimizations
I Or, worse, subtle GC related miscompiles

I Option 2 - Insert poll sites after optimization

Safepoint polls prevent optimizations by design

Early vs Late Insertion

$ # Option 1

$ opt -place -safepoints -O3 foo.ll

vs

$ # Option 2

$ opt -O3 -place -safepoints foo.ll

Late Insertion Overview

Given a set of future poll sites:

1. distinguish references from other pointers

2. identify potential references live at location

3. identify the object referenced by each pointer

4. transform the IR

Distinguishing references

The source IR may contain a mix of references, and
pointers to non-GC managed memory

I Runtime structures, off-heap memory, etc..

Two important distinctions:

I Pointer vs other types

I gc-reference vs pointer

Distinguishing references

Using address spaces gives us this property

I Disallow coercion through inttoptr and
addrspacecast or in memory coercion

Distinguishing references

In practice, LLVM’s passes do not introduce such
coercion constructs if they didn’t exist in the input.

And there are good reasons for them not to.

Finding references which need relocated

Just a simple static liveness analysis

Aside: When relocation isn’t needed

Depending on the collector, not every reference
needs to be relocated. For example, relocating null
is almost always a noop.

Other examples might be:

I References to pinned objects

I References to newly allocated objects

I Constant offset GEPs of relocated values

I Non-relocating collectors ,

Note: Liveness tracking still needed.

Terminology: Derived Pointers

Foo* p = new Foo();

int* q = &(p->field);

... safepoint ...

*q = 5;

Terminology: Derived Pointers

Given a pointer in between two objects, how do we
know which object that pointer is offset from?

int* p = new int [1]{0};

int* q = p + 1;

... safepoint ...

int* p1 = q - 1;

*p1 = 5;

What about base pointers?

Figuring out the base of an arbitrary pointer at
compile time is hard..

int* p = end +3;

while(p > begin) {

...

if(condition) {

p = foo();

}

}

Thankfully, we only need to know the base object at
runtime. We can rewrite the IR to make sure this
is available at runtime, and record where we
should look for it.

We’ll create something like this:

int* p = end +3;

int* base_p = begin;

while(p > begin) {

...

if(condition) {

p = foo();

base_p = p;

}

}

We’ll create something like this:

int* p = end +3;

int* base_p = begin;

while(p > begin) {

...

if(condition) {

p = foo();

base_p = p;

}

}

But for SSA...

The base of ’p’

Assumptions:

I arguments and return values are base pointers

I global variables are base pointers

I object fields are base pointers

A few simple rules

I baseof(gep(p, offset)) is baseof(p)

I baseof(bitcast(p)) is bitcast(baseof(p))

What about PHIs?

What about PHIs?

Each PHI can have a “base phi” inserted.

bb1:

p1 = ...

p1_base = ...

br bb2

bb2:

p = phi(p1 : bb1 , p_next : bb2)

p_base = phi(p1_base , p_base)

...

p_next = gep p + 1

br bb2

What about PHIs?

bb1:

p1 = ...

p1_base = ...

br bb2

bb2:

p = phi(p1 : bb1 , p_next : bb2)

(p base == p1 base)

...

p_next = gep p + 1

br bb2

A case of dead PHI removal (but with safepoints)

Safepoint Poll Insertion

We now know:

I The insertion site

I The values to be relocated

I The base pointer of each derived pointer

This is everything we need to insert a safepoint with
either gcroot or statepoints.

Safepoint Verification

SSA values can not be used after being potentially
relocated. Applications for the verifier:

I frontend authors doing early insertion

I validating the results of the late insertion code

I validating safepoint representations against
existing optimization passes

The verifier may report some false positives. e.g.

safepoint(p)

icmp ne p, null

Restrictions on Source Language

I Conversions between references and non-GC
pointers are disallowed

I Derived pointers can’t escape

I IR aggregate types (vector, array, struct) with
references inside aren’t well supported

Back to our example

void foo(int* arr , int len) {

int* p = arr+len;

while(p != arr) {

p--;

*p = 0;

}

}

With no changes to the optimizer and our new
safepoint insertion pass, we can run:

opt -O3 -place -safepoints example.ll

Runtime of our example

$./ example.nosafepoints -O0.out

real 0m10 .077s

$./ example.nosafepoints -O3.out

real 0m2.180s

$./ example.early -O3.out

real 0m10 .702s

$./ example.late -O3.out

real 0m2.167s

A simple observation

While we’ve described the transformation in terms
of safepoint poll sites, the same techniques work for
parseable calls as well.

This can enable somewhat better optimization around call

sites, particularly w.r.t. aliasing.

A GC Overview

Late Insertion

Statepoints

Representing safepoints in LLVM IR

In a way that

I transforms that break safepoint semantics also
break llvm IR semantics

I it admits a range of lowering strategies

I it is easy to optimize safepoints post insertion

llvm.gcroot

references are “boxed” around parseable calls and
polls

%box = alloca i8*

call void @llvm.gcroot(i8** %box , i8*

null)

...

store %ref, %box

call void @block ()

%ref.r = load %box

llvm.gcroot

However ...

I keeping references in registers does not follow
naturally

I we have to track memory to do safepoint
optimizations

gc.statepoint

I one level more abstract than llvm.gcroot

I tries to be semantic, not operational

I explicitly encodes base pointers

Our late safepoint insertion and verification passes
work on this

gc.statepoint

Our implementation is a set of “GC intrinsics” we
add to llvm:

I gc.statepoint – clobbers heap, relocates
tuple of references

I gc.relocate – projection function

gc.statepoint

%token = call i32 @gc.statepoint(

call_target ,

< call args >, < heap refs >)

%ref_i.relocated =

call i8* @gc.relocate (%token , %ref_i ,

%base_of_ref_i)

Future Work

I Relocation Optimizations
I See list from previous slide

I Statepoint Infrastructure
I Inlining of statepoints
I References in callee saved registers

I Default Polling Strategy
I Call in loop, Inner loop chunking
I Leaf functions

Help wanted! Please review!

Conclusions

I Late insertion of safepoints (and barriers)

I Minimal impact on the compiler

I Doesn’t limit any existing IR optimization

github.com/AzulSystems/llvm-late-safepoint-placement

reviews.llvm.org/D5683

https://github.com/AzulSystems/llvm-late-safepoint-placement
http://reviews.llvm.org/D5683

Conclusions

I Late insertion of safepoints (and barriers)

I Minimal impact on the compiler

I Doesn’t limit any existing IR optimization

Questions?

Backup Slides
Warning: These backup slides are mostly things
which didn’t make into the actual deck. We
included them for distribution since they make some
interesting points, but they’re also decidedly rough.
These slides are fairly likely to contain accidental
mistatements or bugs.

What’s a safepoint poll?
define void @gc.safepoint_poll () #6 {

entry:

%safepoint_needed = ...

br i1 %safepoint_needed , label %

do_safepoint , label %done

do_safepoint:

...

call void @"YourRuntime :: do_safepoint

"()

...

br label %done

done:

ret void

}

How a GC sees the world

Identifying Roots

I A conservative GC might falsely identify roots
that aren’t actually pointers. A precise one will
not.

I Root identification is done with the thread
stopped at a well defined place. This makes
call sites interesting.

Identifying Roots

I A conservative GC might falsely identify roots
that aren’t actually pointers. A precise one will
not.

I Root identification is done with the thread
stopped at a well defined place. This makes
call sites interesting.

Identifying Roots

I A conservative GC might falsely identify roots
that aren’t actually pointers. A precise one will
not.

I Root identification is done with the thread
stopped at a well defined place. This makes
call sites interesting.

Figuring out what’s live

Relocating GC

Relocating GC

Relocating GC

Relocating GC

Relocating GC

Relocating GC

Relocating GC

What cannot be

void @foo(i32* %arr, i32 %len) {

...

b2:

%p = phi [%p.0, %b],[%p.dec, %b4]

%c = icmp ne %p, %arr
br %c, label %b4, label %b6

b4:

%p.dec = getelementptr %p, -1

store i32 0, %p.dec
... safepoint poll site ...

br label %b2

...

}

What cannot be

void @foo(i32* %arr, i32 %len) {

...

b2:

%p = phi [%p.0, %b],[%p.dec, %b4]

%c = icmp ne %p, %arr

br %c, label %b4, label %b6

b4:

%p.dec = getelementptr %p, -1

store i32 0, %p.dec

call void @parse_point(%p.dec, %arr)
br label %b2

...

}

What cannot be

void @foo(i32* %arr, i32 %len) {

%arr.0 = getelementptr %arr , 0

...

b2:

%p = phi [%p.0, %b],[%p.dec, %b4]

%c = icmp ne %p, %arr.0
br %c, label %b4, label %b6

b4:

%p.dec = getelementptr %p, -1

store i32 0, %p.dec

call void @parse_point(%p.dec, %arr)

br label %b2

...

}

The Statepoint Artifact

I the first half of the problem: adequately
representing parse-points in llvm IR

I in way that optimizations don’t break
parse-point semantics.

I semantics follow from constituent parts, not a
new IR instruction with weird semantics, for
example.

Statepoints: motivation
I so, um, we just need a way to tell the GC

about the heap references in my frame, right?

I how about the most obvious thing – a function
call whose sole purpose is to “remember” a set
of heap references?

%r 0 = . . .
%r 1 = . . .
c a l l v o i d @ p a r s e p o i n t (i 8 ∗ %r0 , i 8 ∗ %r 1

)
c a l l v o i d @use (i 8 ∗ %r 0)

I ... and some lowering magic to discover what
registers or stack slots %r0 and %r1 end up in
at the call to@parse point.

Statepoints: motivation
I this approach doesn’t work for a relocating GC.

I consider this “meaning preserving” transform:
From
%r 0 = . . .
%r 1 = . . .
c a l l v o i d @ p a r s e p o i n t (i 8 ∗ %r0 , i 8 ∗ %r 1

)
c a l l v o i d @use (i 8 ∗ %r 0)

To
%r 0 = . . .
%r 1 = . . .
%r 2 = g e t e l e m e n t p t r i 8 ∗ %r0 , 0 ; ; COPY
c a l l v o i d @ p a r s e p o i n t (i 8 ∗ %r0 , i 8 ∗ %r 1

)
c a l l v o i d @use (i 8 ∗ %r 2)

I the compiler regrets nothing!
I works great for a fully precise but

non-relocating collector, though.

Statepoints: motivation
I this approach doesn’t work for a relocating GC.
I consider this “meaning preserving” transform:

From
%r 0 = . . .
%r 1 = . . .
c a l l v o i d @ p a r s e p o i n t (i 8 ∗ %r0 , i 8 ∗ %r 1

)
c a l l v o i d @use (i 8 ∗ %r 0)

To
%r 0 = . . .
%r 1 = . . .
%r 2 = g e t e l e m e n t p t r i 8 ∗ %r0 , 0 ; ; COPY
c a l l v o i d @ p a r s e p o i n t (i 8 ∗ %r0 , i 8 ∗ %r 1

)
c a l l v o i d @use (i 8 ∗ %r 2)

I the compiler regrets nothing!
I works great for a fully precise but

non-relocating collector, though.

Statepoints: motivation
I this approach doesn’t work for a relocating GC.
I consider this “meaning preserving” transform:

From
%r 0 = . . .
%r 1 = . . .
c a l l v o i d @ p a r s e p o i n t (i 8 ∗ %r0 , i 8 ∗ %r 1

)
c a l l v o i d @use (i 8 ∗ %r 0)

To
%r 0 = . . .
%r 1 = . . .
%r 2 = g e t e l e m e n t p t r i 8 ∗ %r0 , 0 ; ; COPY
c a l l v o i d @ p a r s e p o i n t (i 8 ∗ %r0 , i 8 ∗ %r 1

)
c a l l v o i d @use (i 8 ∗ %r 2)

I the compiler regrets nothing!

I works great for a fully precise but
non-relocating collector, though.

Statepoints: motivation
I this approach doesn’t work for a relocating GC.
I consider this “meaning preserving” transform:

From
%r 0 = . . .
%r 1 = . . .
c a l l v o i d @ p a r s e p o i n t (i 8 ∗ %r0 , i 8 ∗ %r 1

)
c a l l v o i d @use (i 8 ∗ %r 0)

To
%r 0 = . . .
%r 1 = . . .
%r 2 = g e t e l e m e n t p t r i 8 ∗ %r0 , 0 ; ; COPY
c a l l v o i d @ p a r s e p o i n t (i 8 ∗ %r0 , i 8 ∗ %r 1

)
c a l l v o i d @use (i 8 ∗ %r 2)

I the compiler regrets nothing!
I works great for a fully precise but

non-relocating collector, though.

Statepoints: motivation

We broke SSA! SSA values are forever – they can’t
be changed or relocated “in place”.

Statepoints: motivation

To fix this, we make the relocation explicit. Our
original example now looks like

%r 0 = . . .
%r 1 = . . .
%t u p l e = c a l l t u p l e t y @ p a r s e p o i n t (i 8 ∗ %r0

, i 8 ∗ %r 1)
%r 0 . r e l o c a t e d = p r o j e c t %t u p l e , %r 0
c a l l v o i d @use (i 8 ∗ %r 0 . r e l o c a t e d)

The original problem disappears – we’ve effectively
communicated that @use sees a value different from
%r0. This is conservative since it admits semantics
other than %r0 is relocated to %r0.relocated.

Statepoints: correctness

Parse-point semantics are admissible in the above
scheme. Hence, llvm cannot do transforms that
invalidate parse-point semantics.

Statepoints: optimizations

We model parse points conservatively, so not may
optimizations kick in. However, certain operations
are “relocation agnostic”, and we can exploit that
to optimize IR with statepoints (R is “relocated
version of”):

I t = null ⇔ R(t) = null

I t 6= null ⇔ R(t) 6= null

I t = s ⇔ R(t) = R(s)
I t 6= s ⇔ R(t) 6= R(s)

I Note that t 6= s < t 6= R(s)

	A GC Overview
	Late Insertion
	Statepoints

